Understanding Fertility Trends of Assam: A District-Level Spatial Analysis Through K-Means Clustering

Authors

  • Chayanika Baruah Department of Statistics, Cotton University, Guwahati, India
  • Ruma Talukdar Department of Statistics, Cotton University, Guwahati, India
  • Saurav Sarma Department of Statistics, Cotton University, Guwahati, India

DOI:

https://doi.org/10.55489/njcm.160920255794

Keywords:

Age specific fertility rate, Multivariate-analysis, Cluster Analysis, Demography

Abstract

Background: Understanding regional fertility patterns is crucial for effective demographic planning and policy formulation. This study estimates the district-level Age-Specific Fertility Rate (ASFR) for Assam and employs cluster analysis to classify the districts of Assam based on their current fertility patterns. The cluster analysis identifies distinct groups with similar fertility characteristics, providing insights into regional variations and demographic transitions across the region. The findings highlight significant heterogeneity in fertility levels within Assam, reflecting diverse socio-economic and cultural influences.

Methods: The K-means clustering technique has been used to group the districts of Assam into distinct clusters.

Results: It was found that based on the calculated single-year age-specific fertility rates, the districts of Assam can be divided into two distinct and non-overlapping clusters. A further comparison of some socio-demographic factors between the two clusters revealed that Cluster 1 (Low Fertility Zone) had higher education levels and a greater proportion of Assamese-speaking women compared to Cluster 2 (High Fertility Zone).

Conclusion: The districts of Assam, India, can be divided into two distinct groups with significantly different fertility patterns and demographics of the mothers. These findings can guide targeted reproductive health interventions in high-fertility districts.

References

Joshi S, Uttamacharya, Borkotoky K, Gautam A, Datta N, Achyut P, Nanda P, Verma R. Spatial Variation in Contraceptive Practice Across the Districts of India, 1998-2016. Spat Demogr. 2021;9(2):241-269. DOI: https://doi.org/10.1007/s40980-021-00092-9 PMid:34722854 PMCid:PMC8549954

Munshi V, Yamey G, Verguet S. Trends in state-level child mortality, maternal mortality, and fertility rates in India. Health Aff (Mill-wood). 2016;35(10):1759-1763. DOI: https://doi.org/10.1377/hlthaff.2016.0552 PMid:27702946

Nayana V, Sandeep J. From Boom to Bust: Unpacking India's Fertility Decline. Indian J Res Anthropol. 2024;10(1):79-94. DOI: https://doi.org/10.21088/ijra.2454.9118.10124.9

Halli SS, et al. Fertility and family planning in Uttar Pradesh, India: major progress and persistent gaps. Reprod Health. 2019;16(1):1-10. DOI: https://doi.org/10.1186/s12978-019-0790-x PMid:31443724 PMCid:PMC6706892

Visaria L. India's date with second demographic transition. China Popul Dev Stud. 2022;6(3):316-337. DOI: https://doi.org/10.1007/s42379-022-00117-w

Tiwari AK, Maurya RK, Singh PK. Proximate Determinant of Fertility in India and Estimation of Total Fertility Rate. Braz J Biom. 2025;43(1):1-15. DOI: https://doi.org/10.28951/bjb.v43i3.771

Bhattacharjee NV, et al. Global fertility in 204 countries and territories, 1950-2021, with forecasts to 2100: a comprehensive demo-graphic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2057-2099. DOI: https://doi.org/10.1016/S0140-6736(24)00550-6 PMid:38521087

Deluwar H, Hazarika C. An empirical analysis of income and livelihood pattern in sandbar areas along the river Brahmaputra. Int J Soc Sci Humanit. 2020;10(2):35-41. DOI: https://doi.org/10.18178/ijssh.2020.V10.1010

Census Commission of India. District-wise basic data - Assam. New Delhi: Government of India; 2011. Available from: https://assam.census.gov.in/basicdata.php [Accessed on June 04, 2025].

Deka M, Sarma S. A quantitative study of the maternal health care of different districts of Assam, India. Int. Res. J. Social Sci. 2022;11(1):13-21.

Baruah S, Borah MC. Inter-district disparities in industrial growth of Assam. Int J Approx Reason. 2017;5(4):1027-1034. DOI: https://doi.org/10.21474/IJAR01/3601

Chakraborty S. Monitoring COVID-19 cases and vaccination in Indian states and union territories using unsupervised machine learning algorithm. Ann Data Sci. 2022;10(5):967-989. DOI: https://doi.org/10.1007/s40745-022-00404-w PMid:38625290 PMCid:PMC9065662

Striessnig E, Bora JK. Under-five child growth and nutrition status: spatial clustering of Indian districts. Spat Demogr. 2020;8(1):63-84. DOI: https://doi.org/10.1007/s40980-020-00058-3

J T, Kumar S, Panda PS, et al. Geospatial hotspot analysis and endemicity trends of missing and unrecovered children in India. Cureus. 2023;15(6):e39955. DOI: https://doi.org/10.7759/cureus.39955 PMID: 37416019; PMCID: PMC10319941.

Dube M, Yadav SK, Singh V. Uncovering regional disparities in infrastructural development of Uttar Pradesh: an exploratory factor analysis. J Reliab Stat Stud. 2022;15(1):21-36. DOI: https://doi.org/10.13052/jrss0974-8024.1512

Kumar S. Monitoring novel corona virus (COVID-19) infections in India by cluster analysis. Ann Data Sci. 2020;7(3):417-425. DOI: https://doi.org/10.1007/s40745-020-00289-7 PMid:38624317 PMCid:PMC7236640

Matheswaran K, Alahacoon N, Pandey RK, Amarnath G. Flood risk assessment in South Asia to prioritize flood index insurance ap-plications in Bihar, India. Geomat Nat Hazards Risk. 2018;10(1):26-48. DOI: https://doi.org/10.1080/19475705.2018.1500495

Adolfsson A, Ackerman M, Brownstein NC. To cluster, or not to cluster: an analysis of clusterability methods. Pattern Recognit. 2019;88(1):13-26. DOI: https://doi.org/10.1016/j.patcog.2018.10.026

International Institute for Population Sciences (IIPS). National Family Health Survey (NFHS 5) 2019-20: India Report. IIPS; 2021. Available from: https://www.dhsprogram.com/pubs/pdf/FR375/FR375.pdf [Accessed on April 05, 2025]

Eaton J, Masquelier B. demogsurv: Demographic analysis of DHS and other household surveys [R package]. Version 0.2.6. 2025 [cit-ed 2025 Jul 16]. Available from: https://github.com/mrc-ide/demogsurv/tree/0389352e6cdd366f9b1324a0ffe837081c587d86

Bongaarts J. Human population growth and the demographic transition. Philos Trans R Soc Lond B Biol Sci. 2009;364(1532):2985-2990. DOI: https://doi.org/10.1098/rstb.2009.0137 PMid:19770150 PMCid:PMC2781829

Coale AJ, Hill AG, Trussell TJ. A new method of estimating standard fertility measures from incomplete data. Population Index. 1975;41(2):182-210. DOI: https://doi.org/10.2307/2734617

MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Sym-posium on Mathematical Statistics and Probability, Vol 1. Berkeley (CA): Univ Calif Press; 1967. p. 281-297. Available from: http://projecteuclid.org/euclid.bsmsp/1200512992

Hartigan JA, Wong MA. Algorithm AS 136: a K means clustering algorithm. J R Stat Soc Ser C Appl Stat. 1979;28(1):100-108. DOI: https://doi.org/10.2307/2346830

Onumanyi AJ, Molokomme DN, Isaac SJ, et al. AutoElbow: An automatic elbow detection method for estimating the number of clus-ters in a dataset. Appl Sci. 2022;12(15):7515. DOI: https://doi.org/10.3390/app12157515

Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20(1):53-65. DOI: https://doi.org/10.1016/0377-0427(87)90125-7

Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistic. J R Stat Soc Ser B Stat Methodol. 2001;63(2):411-426. DOI: https://doi.org/10.1111/1467-9868.00293

Krzanowski W, Lai Y. A criterion for determining the number of groups in a data set using sum of squares clustering. Biometrics. 1988;44(1):23-34. DOI: https://doi.org/10.2307/2531893

Patil C, Baidari I. Estimating the optimal number of clusters k in a dataset using data depth. Data Sci Eng. 2019;4(2):132-140. DOI: https://doi.org/10.1007/s41019-019-0091-y

Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: An R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61(6):1-36. DOI: https://doi.org/10.18637/jss.v061.i06

Hopkins B, Skellam JG. A new method for determining the type of distribution of plant individuals. Ann Bot. 1954;18(2):213-228. DOI: https://doi.org/10.1093/oxfordjournals.aob.a083391

Lawson RG, Jurs PC. New index for clustering tendency and its application to chemical problems. J Chem Inf Comput Sci. 1990;30(1):36-41. DOI: https://doi.org/10.1021/ci00065a010

Downloads

Published

2025-09-01

How to Cite

1.
Baruah C, Talukdar R, Sarma S. Understanding Fertility Trends of Assam: A District-Level Spatial Analysis Through K-Means Clustering. Natl J Community Med [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];16(09):895-906. Available from: https://njcmindia.com/index.php/file/article/view/5794

Issue

Section

Original Research Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.