Diagnostic Accuracy of The TrueNat MTB/RIF Assay And Comparison With The Reference Standards To Detect Pulmonary Tuberculosis And Rifampicin Resistance in Sputum Samples From Patients Attending A Tertiary Care Hospital in Bhubaneswar, India
DOI:
https://doi.org/10.55489/njcm.150320243413Keywords:
Diagnostic accuracy, TrueNAT MTB/RIF Assay, pulmonary tuberculosis, RIF resistance, patientsAbstract
Background: A rapid and accurate diagnostic tool is necessary for correct diagnosis and treatment of TB. This study evaluated and compared the sensitivity, specificity and concordance of TrueNAT MTB/RIF assay with smear microscopy, Xpert MTB/RIF and MGIT culture.
Methods: In all, 4500 patients (1500 each of patients with Diabetes, elderly and HIV-positive patients) attending the Chest and TB department of Capital Hospital, Bhubaneswar were screened. 392 sputum samples were collected from presumptive TB patients. Standard diagnostic procedures (Smear Microscopy, Xpert MTB/RIF, TrueNAT MTB tests and MGIT culture) were performed.
Results: This diagnostic efficiency of rapid molecular TrueNAT MTB/RIF assays have similar properties as Xpert MTB/RIF and may be used for the diagnosis of TB and Rifampicin resistance. Among participants, the TrueNAT MTB shows the sensitivity of 80%, 100% and 78.26% while the specificity was 97.9%, 95.83% and 100%. The concordance rates between all tests were calculated and the TrueNAT MTB showed good agreement with the culture method among study participants (κ = 0.793, 0.554, and 0.862, respectively).
Conclusion: The TrueNAT assays are sensitive for diagnosis of TB patients with faster turnabout time from testing to treatment and economical.
References
WHO-Global Tuberculosis Report. Available from: https://www.who.int/publications/digital/global-tuberculosis-report-2021. Pdf: 1-57.
India TB Report 2021: Ministry of Health and Family Welfare. Available from: https://tbcindia.gov.in/showfile.php?lid=3587. Pdf: 1-352.
Jeyashree K, Thangaraj J, Rade K, Modi B, Selvaraju S, Velusamy S, Akhil S, Vijayageetha M, Rani DS, Sabarinathan R, Manikandanesan S. Estimation of tuberculosis incidence at sub-national level using three methods to monitor progress towards ending TB in India, 2015-2020. BMJ open. 2022;12(7):1-11. Doi: https://doi.org/10.1136/bmjopen-2021-060197 PMid:35902192 PMCid:PMC9340578
Gali JH, Varma HV, Badam AK. Hurdle in the eradication of tuberculosis: delay in diagnosis. Egypt. J. Chest Dis. Tub. 2019;68(1):32-38. Doi: https://doi.org/10.4103/ejcdt.ejcdt_124_18
Poeta P, Silva V, Guedes A, Eduardo Pereira J, Cláudia Coelho A, Igrejas G. Tuberculosis in the 21th century: Current status of diagnostic methods. Exp. Lung Res.2018;44(7):352-60. Doi: https://doi.org/10.1080/01902148.2018.1545880 PMid:30663432
Huang Y, Ai L, Wang X, Sun Z, Wang F. Review and Updates on the Diagnosis of Tuberculosis. J. Clin. Med. 2022;11(19):1-14. Doi: https://doi.org/10.3390/jcm11195826 PMid:36233689 PMCid:PMC9570811
Chopra KK, Sidiq Z, Hanif M, Dwivedi KK. Advances in the diagnosis of tuberculosis-Journey from smear microscopy to whole genome sequencing. Ind. J. Tub.2020;67(4):61-68. Doi: https://doi.org/10.1016/j.ijtb.2020.09.026 PMid:33308673
Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott's Diagnostic Microbiology. 12th edition. St.Louis: The C.V Mosby Co; 2007. chapter 45 Pdf: 478-509.
Singhal R, Myneedu VP. Microscopy as a diagnostic tool in pulmonary tuberculosis. Int. J. Mycobacteriol. 2015;4(1):1-6. Doi: https://doi.org/10.1016/j.ijmyco.2014.12.006 PMid:26655191
Singh N, Singh AK, Kumar S, Singh NP. Role of mycobacterial culture and drug sensitivity testing laboratory under National Tuberculosis Elimination Program for the abolition of Tuberculosis in India by 2025. J. Clin. Diagnos. Res. 2022;6(7):1-5. Doi: https://doi.org/10.7860/JCDR/2022/55426.16655
Nachiappan AC, Rahbar K, Shi X, Guy ES, Mortani Barbosa Jr EJ, Shroff GS, Ocazionez D, Schlesinger AE, Katz SI, Hammer MM. Pulmonary tuberculosis: role of radiology in diagnosis and management. Radiographics. 2017;37(1):52-72. Doi: https://doi.org/10.1148/rg.2017160032 PMid:28076011
Bhalla AS, Goyal A, Guleria R, Gupta AK. Chest tuberculosis: Radiological review and imaging recommendations. Indian Journal of Radiology and Imaging. 201;25(03):213-25. Doi: https://doi.org/10.4103/0971-3026.161431 PMid:26288514 PMCid:PMC4531444
Gupta PP, Mynalli AB, Yadav A. Diagnostic role of cartridge based nucleic acid amplification test in diagnosing tuberculosis in patients co-infected with human immunodeficiency virus. J Med SciClin Res. 2017;5(05):21841-8. Doi: https://doi.org/10.18535/jmscr/v5i5.100
Tripathi R, Kashyap S, Chaubey P, Pandey AP, Anupurba S. Role of cartridge-based nucleic acid amplification test in detection of pulmonary tuberculosis in people living with human immunodeficiency virus. Journal of The Academy of Clinical Microbiologists. 2017;19(2):114-20. Doi: https://doi.org/10.4103/jacm.jacm_37_16
Guillamet CV, Hsu JL, Dhillon G, and Guillamet RV. Pulmonary Infections in Immuno-compromised Hosts: Clinical. J Thorac Imaging. 2018 Sep; 33(5): 295-305. Doi: https://doi.org/10.1097/RTI.0000000000000351 PMid:30048345 PMCid:PMC6103831
Stevenson CR, Forouhi NG, Roglic G, Williams BG, Lauer JA, Dye C, Unwin N. Diabetes and tuberculosis: the impact of the diabetes epidemic on tuberculosis incidence. BMC public health. 2007;7(1):1-8. Doi: https://doi.org/10.1186/1471-2458-7-234 PMid:17822539 PMCid:PMC2001194
Yew WW, Yoshiyama T, Leung CC, Chan DP. Epidemiological, clinical and mechanistic perspectives of tuberculosis in older people. Respirology. 2018;23(6):567-75. Doi: https://doi.org/10.1111/resp.13303 PMid:29607596
Restrepo BI. Diabetes and tuberculosis. Understanding the host immune response against mycobacterium tuberculosis infection. 2018:1-21. Doi: https://doi.org/10.1007/978-3-319-97367-8_1
Nair S, Murthy N. Newer molecular diagnostic tests for tuberculosis: How good are they? Where can we use them? J. Adv. Lung Health. 2021;1(2):38-43. Doi: https://doi.org/10.4103/jalh.jalh_3_21
Baron EJ, Tenover FC, Gnanashanmugam D. Direct detection of mycobacterium tuberculosis in clinical specimens using nucleic acid amplification tests. Clin. Microbiol. Newsl. 2018 ;40(13):107-12. Doi: https://doi.org/10.1016/j.clinmicnews.2018.06.003
MacLean E, Kohli M, Weber SF, Suresh A, Schumacher SG, Denkinger CM, Pai M. Advances in molecular diagnosis of tuberculosis. J. Clin. Microbiol.2020;58(10):2-19. Doi: https://doi.org/10.1128/JCM.01582-19 PMid:32759357 PMCid:PMC7512154
Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N, Sapkota B. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Reports. 2020;47(5):4065-75. Doi: https://doi.org/10.1007/s11033-020-05413-7 PMid:32248381
Vijayalakshmi J, Surekha A, Devi AR, Devi SU. Truenat-A Novel Diagnostic Tool for Rapid Detection of Mycobacterium Tuberculosis and Rifampicin Resistance in Pulmonary Samples. Int. J. Curr. Microbiol. App. Sci. 2019;8(10):1-9. Doi: https://doi.org/10.20546/ijcmas.2019.810.148
Nikam C, Jagannath M, Narayanan MM, Ramanabhiraman V, Kazi M, Shetty A, Rodrigues C. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: a near-care approach. PloS one.2013;8(1):1-7. Doi: https://doi.org/10.1371/journal.pone.0051121 PMid:23349670 PMCid:PMC3549918
Nikam C, Kazi M, Nair C, Jaggannath M, Manoj M, Vinaya R, Shetty A, Rodrigues C. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int. J. Mycobacteriol. 2014;3(3):205-10. Doi: https://doi.org/10.1016/j.ijmyco.2014.04.003 PMid:26786489
Jeyashree K, Shanmugasundaram D, Rade K, Gangakhedkar RR, Murhekar MV. Impact and operational feasibility of TrueNat™ MTB/Rif under India's RNTCP. Public Health Action. 2020;10(3):87-91. Doi: https://doi.org/10.5588/pha.20.0004 PMid:33134121 PMCid:PMC7577004
Lee DJ, Kumarasamy N, Resch SC, Sivaramakrishnan GN, Mayer KH, Tripathy S, Paltiel AD, Freedberg KA, Reddy KP. Rapid, point-of-care diagnosis of tuberculosis with novel Truenat assay: cost-effectiveness analysis for India's public sector. PLoS One. 2019;14(7):1-17. Doi: https://doi.org/10.1371/journal.pone.0218890 PMid:31265470 PMCid:PMC6605662
MGITTM Procedure. Manual. Available from: http://www.finddiagnostics.org/export/sites/default/ resource-centre/find_reports/pdfs/mgit_manual_nov2006.
Ardito F, Posteraro B, Sanguinetti M, Zanetti S, Fadda G. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2001; 39 (12) : 4440-44. Doi: https://doi.org/10.1128/JCM.39.12.4440-4444.2001 PMid:11724858 PMCid:PMC88562
Kang BH, Lee Y, Yu ES, Na H, Kang M, Huh HJ, Jeong KH. Ultrafast and Real-Time NanoplasmonicOn-Chip Polymerase Chain Reaction for Rapid and Quantitative Molecular Diagnostics. ACS Nano 2021, 15, 6, 10194-10202. Doi: https://doi.org/10.1021/acsnano.1c02154 PMid:34008961
Ngangue YR, Mbuli C, Neh A, Nshom E, Koudjou A, Palmer D, Ndi NN, Qin ZZ, Creswell J, Mbassa V, Vuchas C. Diagnostic Accuracy of the Truenat MTB Plus Assay and Comparison with the Xpert MTB/RIF assay to detect Tuberculosis among hospital outpatients in Cameroon. J. Clin. Microbiol.2022;60(8):15-22. Doi: https://doi.org/10.1128/jcm.00155-22 PMid:35861529 PMCid:PMC9383115
Valsan PM, Sudarasana J. Comparison of TrueNat polymerase chain reaction and mycobacterium growth indicator tube culture in the diagnosis of pulmonary and extra-pulmonary tuberculosis. J. Acad. Clin. Microbiol.2022;24(1):21-25.
Penn-Nicholson A, Gomathi SN, Ugarte-Gil C, Meaza A, Lavu E, Patel P, Choudhury B, Rodrigues C, Chadha S, Kazi M, Macé A. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Europ. Res. J. 2021;58(5):1-11. Doi: https://doi.org/10.1183/13993003.00526-2021 PMid:34049948 PMCid:PMC8607906
Gomathi NS, Singh M, Singh UB, Myneedu VP, Chauhan DS, Sarin R, Mohan A, Bhatnagar A, Khangembam JS, Kannan T, Rao MV. Multi-centric validation of indigenous molecular test Truenat™ MTB for detection of Mycobacterium tuberculosis in sputum samples from presumptive pulmonary tuberculosis patients in comparison with reference standards. Ind. J. Med. Res. 2020;152(4):378-85. Doi: https://doi.org/10.4103/ijmr.IJMR_2539_19 PMid:33380702 PMCid:PMC8061602
Meaza A, Tesfaye E, Mohamed Z, Zerihun B, Seid G, Eshetu K, Amare M, Sinshaw W, Dagne B, Mollalign H, Diriba G. Diagnostic accuracy of Truenat Tuberculosis and Rifampicin-Resistance assays in Addis Ababa, Ethiopia. Plos One. 2021;16(12):1-9. Doi: https://doi.org/10.1371/journal.pone.0261084 PMid:34962949 PMCid:PMC8714111
Jose RA, Gopal K, Samuel Johnson AK, Johnson Samuel JA, Abraham SS, Goswami T, Thomas M, Mathew R. Evaluation of Truenat MTB/RIF Test in Comparison with Microscopy and Culture for Diagnosis of extra-pulmonary Tuberculosis in a tertiary care centre. J. Clin. Diagnos. Res.2021;15(1):1-5. Doi: https://doi.org/10.7860/JCDR/2021/46815.14432
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Braja Barik, Shritam Das, Khusbu Singh, Sudatta Chandan, Subrat Kumar Swain, Prasanti Nayak, Omkar Abadesh Mishra, Tahziba Hussain, Dasarathi Das, Sanghamitra Pati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The authors retain the copyright of their article, with first publication rights granted to Medsci Publications.