Assessment of Risk Factors of Cardiovascular Diseases Using Artificial Neural Network (ANN): A Pilot Study

Authors

  • PGN Swamy Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India; Adichunchanagiri Nursing College, Adichunchanagiri University, BG Nagara, Karnataka, India
  • Kanika Rai Chitkara School of Health Sciences; Centre for Evidence Based Practice in Health Care, Chitkara University, Punjab, India

DOI:

https://doi.org/10.55489/njcm.161120255963

Keywords:

Mixed method, Artificial neural network, Cardiovascular disease, Urban India, AI in Public health, CVD epidemiology

Abstract

Background: Cardiovascular diseases (CVDs) are the leading cause of death globally, particularly in urban populations. In India, an estimated 62.5 million lives are lost prematurely due to CVD. Traditional risk assessment tools like the Framingham Risk Score, Systematic Coronary Risk Evaluation, and Reynolds Risk Score are widely used. However, Artificial Neural Networks (ANNs) may provide improved prediction of cardiovascular risks. This study aims to assess cardiovascular risk factors among urban populations using ANN models and compare their effectiveness with traditional methods.

Methodology: A sequential exploratory mixed-method approach was used. The qualitative phase included focus group discussions with 35 healthcare professionals to identify perceived cardiovascular risk factors. Analysis via QDA Miner Lite highlighted health education, screening, and training as crucial roles of health workers, especially concerning diabetes, diet, and hypertension. The quantitative phase used a multi-layer perceptron model to analyze data from 60 participants (pilot phase), divided into 77% training and 23% testing datasets.

Results and Conclusion: The ANN model achieved 100% training accuracy and 85.7% testing accuracy, with an AUC of 0.969, showing strong predictive performance. The model effectively identified moderate-risk individuals, suggesting that ANNs outperform traditional methods in cardiovascular risk prediction.

References

World Health Organization. Cardiovascular diseases. Geneva: World Health Organization; [cited 2025 Aug 13]. Available from: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

Prabhakaran D, Jeemon P, Roy A. Cardiovascular Diseases in India: Current Epidemiology and Future Directions. Circulation. 2016 Apr 19;133(16):1605-1620. DOI: https://doi.org/10.1161/CIRCULATIONAHA.114.008729 PMid:27142605

Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004 Sep 11-17;364(9438):937-952. DOI: https://doi.org/10.1016/S0140-6736(04)17018-9 PMid:15364185

Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative review. Prev Med Rep. 2018 Oct 19;12:284-293. DOI: https://doi.org/10.1016/j.pmedr.2018.10.008 PMid:30406006 PMCid:PMC6214883

Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res. 2017 Apr;26(2):796-808. DOI: https://doi.org/10.1177/0962280214558972 PMID: 25411322 PMCID: PMC5394463

Shouval R, Bondi O, Mishan H, Shimoni A, Unger R, Nagler A. Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT. Bone Marrow Transplant. 2014 Mar;49(3):332-337. DOI: https://doi.org/10.1038/bmt.2013.146 PMid:24096823

Caruana R, Lou Y, Gehrke J, et al. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015:1721-1730. DOI: https://doi.org/10.1145/2783258.2788613

Kim JK, Kang S. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis. J Healthc Eng. 2017;2017:2780501. DOI: https://doi.org/10.1155/2017/2780501 PMID: 29065583; PMCID: PMC5606055

Malindisa EK, Balandya E, Mashili F, Iddi S, Njelekela M. The magnitude of type 2 diabetes mellitus and cardiovascular disease risk factors among young adults in urban settings: a cross-sectional survey in Mwanza, Tanzania. Pan Afr Med J. 2022 May 10;42:19. DOI: https://doi.org/10.11604/pamj.2022.42.19.22184 PMID: 35812257 PMCID: PMC9228915

Tamosiunas A, Grazuleviciene R, Luksiene D, Dedele A, et al. Accessibility and use of urban green spaces, and cardiovascular health: findings from a Kaunas cohort study. Environ Health. 2014 Mar 19;13(1):20. DOI: https://doi.org/10.1186/1476-069X-13-20 PMid:24645935 PMCid:PMC4000006

de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med. 2022 Jun;291(6):779-800. DOI: https://doi.org/10.1111/joim.13467 PMid:35138681 PMCid:PMC9310863

Goldman O, Raphaeli O, Goldman E, Leshno M. Improvement in the Prediction of Coronary Heart Disease Risk by Using Artificial Neural Networks. Qual Manag Health Care. 2021 Oct-Dec 01;30(4):244-250. DOI: https://doi.org/10.1097/QMH.0000000000000309 PMid:34326290

Chida Y, Steptoe A. The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. J Am Coll Cardiol. 2009 Mar 17;53(11):936-946. DOI: https://doi.org/10.1016/j.jacc.2008.11.044 PMid:19281923

Vlahov D, Freudenberg N, Proietti F, Ompad D, Quinn A, Nandi V, Galea S. Urban as a determinant of health. J Urban Health. 2007 May;84(3 Suppl):i16-26. DOI: https://doi.org/10.1007/s11524-007-9169-3 PMid:17356903 PMCid:PMC1891649

Galea S, Vlahov D. Urban health: evidence, challenges, and directions. Annu Rev Public Health. 2005;26:341-365. DOI: https://doi.org/10.1146/annurev.publhealth.26.021304.144708 PMid:15760293

Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012 Jul 21;380(9838):219-229. DOI: https://doi.org/10.1016/S0140-6736(12)61031-9 PMID: 22818936 PMCID: PMC3645500

Kalra K, Moumneh MB, Nanna MG, Damluji AA. Beyond MACE: a multidimensional approach to outcomes in clinical trials for older adults with stable ischemic heart disease. Front Cardiovasc Med. 2023;10:1276370. DOI: https://doi.org/10.3389/fcvm.2023.1276370 PMid:38045910 PMCid:PMC10690830

Singh M, Kumar A, Khanna NN, Laird JR, Nicolaides A, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. E Clinical Medicine. 2024 May 27;73:102660. DOI: https://doi.org/10.1016/j.eclinm.2024.102660 PMid:38846068 PMCid:PMC11154124

Weng WH, Baur S, Daswani M, Chen C, Harrell L, Kakarmath S, et al. Predicting cardiovascular disease risk using photoplethysmography and deep learning. PLOS Glob Public Health. 2024 Jun 4;4(6):e0003204. DOI: https://doi.org/10.1371/journal.pgph.0003204 PMID: 38833495 PMCID: PMC11149850

Asadi F, Homayounfar R, Mehrali Y, Masci C, Talebi S, Zayeri F. Detection of cardiovascular disease cases using advanced tree-based machine learning algorithms. Sci Rep. 2024 Sep 27;14(1):22230. DOI: https://doi.org/10.1038/s41598-024-72819-9 PMid:39333550 PMCid:PMC11437204

Meder B, Asselbergs FW, Ashley E. Artificial intelligence to improve cardiovascular population health. Eur Heart J. 2025 May 21;46(20):1907-1916. DOI: https://doi.org/10.1093/eurheartj/ehaf125 PMID: 40106837 PMCID: PMC12093147

Agarbattiwala MH, Shaikh AI, Patel P. Comparative Study of Artificial Intelligence-Driven Diagnostic Models and Traditional Risk Scores in Predicting Cardiovascular Events. Eur J Cardiovasc Med. 2025;15(4):323-326. DOI : https://doi.org/10.61336/ejcm/25-04-60

Downloads

Published

2025-11-01

How to Cite

1.
Swamy P, Rai K. Assessment of Risk Factors of Cardiovascular Diseases Using Artificial Neural Network (ANN): A Pilot Study. Natl J Community Med [Internet]. 2025 Nov. 1 [cited 2025 Nov. 1];16(11):1131-4. Available from: https://njcmindia.com/index.php/file/article/view/5963

Issue

Section

Original Research Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.