Recent and Advanced Trends in Cancer Treatments

Authors

  • Chithra RA King Khalid University, Muhayil, Saudi Arabia
  • Mohamed Osman Elamin Umm Al-Qura University, Saudi Arabia
  • Sucheta Karande Ganpat University, Gujarat, India

DOI:

https://doi.org/10.55489/njcm.151220244714

Keywords:

Cancer treatment, CAR-T cell therapy, gene therapy, CRISPR/Cas9, Nanocarrier

Abstract

Background: Cancer treatment remains a critical area of clinical research, with numerous approaches developed depending on tumor type and stage. Recent advances in genetic and immunotherapy, bioinformatics, and genetic science have revolutionized cancer diagnosis and treatment. Emerging technologies such as gene delivery, oncolytic virotherapy, suicide gene therapy, and CRISPR/Cas9 offer promising therapeutic avenues.

Methods: This review provides a detailed analysis of the latest techniques of Gene therapy, artificial intelligence, Nanocarrier Delivery Systems, Immunotherapy, CAR T-Cell Therapy, Epigenetics, Vaccines, and Clinical translation and assessing their therapeutic potential in cancer treatment. A review of early critical studies focused on the integration of immunotherapy, nanotechnology, and artificial intelligence (AI) in cancer therapies with emphasis on targeted delivery systems and precision medicine.

Results: The review highlights the synergistic effects of combining targeted therapies with immunotherapy, particularly immune checkpoint inhibitors and CAR-T cell therapy. Therapies such as CRISPR/Cas9 demonstrate significant potential in cancer targeting, while advancements in nanocarrier delivery systems offer enhanced precision with reduced side effects. AI's role in improving cancer diagnosis and personalized treatment is also underscored.

Conclusion: This comprehensive analysis of recent therapeutic approaches and technological advancements addresses gaps in previous reviews and offers updated insights into cutting-edge cancer treatments. The review emphasizes the evolving role of immunotherapy, nanotechnology, AI, and nanotechnology, providing clinicians and researchers with the most current and relevant information for optimizing cancer treatment strategies.

References

Jiang C, Deng L, Karr MA, Wen Y, Wang Q, Perimbeti S, Shapiro CL, Han X. Chronic comorbid conditions among adult cancer survivors in the United States: Results from the National Health Interview Survey, 2002‐2018. Cancer. 2022;128(4):828-38. DOI: https://doi.org/10.1002/cncr.33981 PMid:34706057 PMCid:PMC8792209

Acha-Sagredo A, Ganguli P, Ciccarelli FD. Somatic variation in normal tissues: friend or foe of cancer early detection? Ann Oncol. 2022;33(12):1239-49. DOI: https://doi.org/10.1016/j.annonc.2022.09.156 PMid:36162751

Lenz G, Onzi GR, Lenz LS, Buss JH, Dos Santos JA, Begnini KR. The origins of phenotypic heterogeneity in cancer. Cancer Res. 2022;82(1):3-11. DOI: https://doi.org/10.1158/0008-5472.CAN-21-1940 PMid:34785576

Behranvand N, Nasri F, Zolfaghari Emameh R, Khani P, Hosseini A, Garssen J, Falak R. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022;71(3):507-26. DOI: https://doi.org/10.1007/s00262-021-03013-3 PMid:34355266 PMCid:PMC10992618

Lou X, Qin Y, Xu X, Yu X, Ji S. Spatiotemporal heterogeneity and clinical challenge of pancreatic neuroendocrine tumors. Biochim. Biophys. Acta Rev. Cancer. 2022;1877(5):188782. DOI: https://doi.org/10.1016/j.bbcan.2022.188782 PMid:36028148

Ahmed S, Rehman SU, Tabish M. Cancer nanomedicine: A step towards improving chemotherapeutic drugs' drug delivery and enhanced efficacy. OpenNano. 2022;7:100051. DOI: https://doi.org/10.1016/j.onano.2022.100051

Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX, Wolfram J. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019;9(26):8001. DOI: https://doi.org/10.7150/thno.37097 PMid:31754377 PMCid:PMC6857056

Luo M, Zhou L, Huang Z, Li B, Nice EC, Xu J, Huang C. Antioxidant therapy in cancer: rationale and progress. Antioxidants. 2022;11(6):1128. DOI: https://doi.org/10.3390/antiox11061128 PMid:35740025 PMCid:PMC9220137

Rudzińska A, Juchaniuk P, Oberda J, Wiśniewska J, Wojdan W, Szklener K, Mańdziuk S. Phytochemicals in cancer treatment and cancer prevention-review on epidemiological data and clinical trials. Nutrients. 2023;15(8):1896. DOI: https://doi.org/10.3390/nu15081896 PMid:37111115 PMCid:PMC10144429

Naeem M, Hazafa A, Bano N, Ali R, Farooq M, Abd Razak SI, Lee TY, Devaraj S. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy. Life Sci. 2023; 316:121409. DOI: https://doi.org/10.1016/j.lfs.2023.121409 PMid:36681183

He W, Li Q, Lu Y, Ju D, Gu Y, Zhao K, Dong C. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Curr. Gene Ther. 2022;22(5):368-85. DOI: https://doi.org/10.2174/1566523221666211119110755 PMid:34802404

Fliedner FP, Engel TB, El-Ali HH, Hansen AE, Kjaer A. Diffusion-weighted magnetic resonance imaging (DW MRI) as a non-invasive, tissue cellularity marker to monitor cancer treatment response. BMC cancer. 2020; 20:1-9. DOI: https://doi.org/10.1186/s12885-020-6617-x PMid:32075610 PMCid:PMC7031987

Higgins KA, Puri S, Gray JE. Systemic and radiation therapy approaches for locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2022;40(6):576-85. DOI: https://doi.org/10.1200/JCO.21.01707 PMid:34985931

Qu X, Zhou D, Lu J, Qin D, Zhou J, Liu HJ. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy. Bioact. Mater. 2023;24:136-52. DOI: https://doi.org/10.1016/j.bioactmat.2022.12.010 PMid:36606253 PMCid:PMC9792706

Shibutani Y, Sato H, Suzuki S, Shinozaki T, Kamata H, Sugisaki K, Kawanobe A, Uozumi S, Kawasaki T, Hayashi R. A case series on pain accompanying photoimmunotherapy for head and neck cancer. In Healthcare. 2023;11(6): 924. MDPI. DOI: https://doi.org/10.3390/healthcare11060924 PMid:36981581 PMCid:PMC10048590

Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, Shainsky‐Roitman J, Lammers T, Schroeder A. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 2020;32(13):1901989. DOI: https://doi.org/10.1002/adma.201901989 PMid:31286573 PMCid:PMC7124889

Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv. Transl. Res. 2023;13(1):189-221. DOI: https://doi.org/10.1007/s13346-022-01211-9 PMid:36074253

Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, Rahmanpour D, Fattahi S, Shabani H, Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathol. Res. Pract. 2022;229:153723. DOI: https://doi.org/10.1016/j.prp.2021.153723 PMid:34952426

Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin. Exp. Metastasis. 2018;35:309-18. DOI: https://doi.org/10.1007/s10585-018-9903-0 PMid:29799080

Green AK. Challenges in assessing the cost-effectiveness of cancer immunotherapy. JAMA Netw. Open. 2021;4(1):e2034020. DOI: https://doi.org/10.1001/jamanetworkopen.2020.34020 PMid:33464313

Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct. Target. Ther. 2022;7(1):258. DOI: https://doi.org/10.1038/s41392-022-01102-y PMid:35906199 PMCid:PMC9338328

Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front. Immunol. 2022;13:961805. DOI: https://doi.org/10.3389/fimmu.2022.961805 PMid:36304470 PMCid:PMC9592930

Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 2022;19(1):37-50. DOI: https://doi.org/10.1038/s41571-021-00552-7 PMid:34580473

Wall-Medrano A, Olivas-Aguirre FJ. Antioxidant phytochemicals in cancer prevention and therapy-An update. Funct. Foods Cancer Prev. Ther. 2020;195-220. Academic Press. 25. DOI: https://doi.org/10.1016/B978-0-12-816151-7.00011-9

Bykov VJ, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer. 2018;18(2):89-102. DOI: https://doi.org/10.1038/nrc.2017.109 PMid:29242642

De Virgilio A, Costantino A, Festa BM, Mercante G, Franceschini D, Franzese C, Scorsetti M, Marrari A, Cavina R, Marano S, Castoro C. Oncological outcomes of squamous cell carcinoma of the cervical esophagus treated with definitive (chemo-) radiotherapy: a systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2023;149(3):1029-41. DOI: https://doi.org/10.1007/s00432-022-03965-8 PMid:35235020

Peng Z, Lv X, Huang S. Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy. Cancer Control. 2022; 29:10732748221088825. DOI: https://doi.org/10.1177/10732748221088825 PMCid:PMC9016614

Miglani A, Patel VM, Stern CS, Weichman KE, Haigentz Jr M, Ow TJ, Garfein ES. Palliative reconstruction for the management of incurable head and neck cancer. J. Reconstr. Microsurg. 2016;32(03):226- 32. DOI: https://doi.org/10.1055/s-0035-1568156 PMid:26636886

Huang S-G, Santos-Oliveira R, Larios AP. Recent trends in cancer management. Curr Top Med Chem. 2022;22(30):2493-2493. DOI: https://doi.org/10.2174/156802662230221208104151 PMid:36650753

Sharma P, Jhawat V, Mathur P, Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med. Oncol. 2022;39(5):76. DOI: https://doi.org/10.1007/s12032-022-01677-0 PMid:35195787 PMCid:PMC8863908

Cognetti DM, Curry JM, KuklÃk R, Gillenwater AM. A phase 1, first-in-human, drug dose-escalation study of RM-1995 photo immunotherapy, as monotherapy or combined with pembrolizumab, in patients with advanced cutaneous squamous cell carcinoma or with head and neck squamous cell carcinoma.

Wen Y, Zhu Y, Zhang C, Yang X, Gao Y, Li M, Yang H, Liu T, Tang H. Chronic inflammation, cancer development and immunotherapy. Front. Pharmacol. 2022;13:1040163. DOI: https://doi.org/10.3389/fphar.2022.1040163 PMid:36313280 PMCid:PMC9614255

Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front. Immunol. 2023; 14:1277243. DOI: https://doi.org/10.3389/fimmu.2023.1277243 PMid:38035069 PMCid:PMC10684919

Koury J, Lucero M, Cato C, Chang L, Geiger J, Henry D, Hernandez J, Hung F, Kaur P, Teskey G, Tran A. Immunotherapies: exploiting the immune system for cancer treatment. J. Immunol. Res. 2018;2018. DOI: https://doi.org/10.1155/2018/9585614 PMid:29725606 PMCid:PMC5872614

Vittrant B, Bergeron A, Molina OE, Leclercq M, Légaré XP, Hovington H, Picard V, Martin-Magniette ML, Livingstone J, Boutros PC, Collins C. Immune-focused multi-omics analysis of prostate cancer: leukocyte Ig-Like receptors are associated with disease progression. Oncoimmunology. 2020;9(1):1851950.DOI: https://doi.org/10.1080/2162402X.2020.1851950 PMid:33299664 PMCid:PMC7714461

Zhu Y, Meng M, Hou Z, Wang W, Li L, Guan A, Wang R, Tang W, Yang F, Zhao Y, Gao H. Impact of cytotoxic T lymphocytes immunotherapy on prognosis of colorectal cancer patients. Front. Oncol. 2023;13:1122669. DOI: https://doi.org/10.3389/fonc.2023.1122669 PMid:36726382 PMCid:PMC9885253

Jha AM, Veerakumar R, Puhazhendhi T, Kesavan R, Naveenraj NS. Immunotherapy's Promising Potential for Cancer Treatment: Oncology-Immunotherapy for Cancer. Int. J. Trends Oncosci. 2023:25-35.

Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book. 2019;39:147-64. DOI: https://doi.org/10.1200/EDBK_240837 PMid:31099674

Clevers H, Tuveson DA. Organoid models for cancer research. Annu. Rev. Cancer Biol. 2019;3:223-34. DOI: https://doi.org/10.1146/annurev-cancerbio-030518-055702

Hayashi H, Chamoto K, Hatae R, Kurosaki T, Togashi Y, Fukuoka K, Goto M, Chiba Y, Tomida S, Ota T, Haratani K. Soluble immune checkpoint factors reflect exhaustion of antitumor immunity and response to PD-1 blockade. J. Clin. Invest. 2024;134(7). DOI: https://doi.org/10.1172/JCI168318 PMid:38557498 PMCid:PMC10977985

Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Revolutionization in cancer therapeutics via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals. 2022;15(3):335.DOI: https://doi.org/10.3390/ph15030335 PMid:35337133 PMCid:PMC8952773

Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer. 2019;18:1-4. DOI: https://doi.org/10.1186/s12943-019-1091-2 PMid:31690319 PMCid:PMC6833286

Sheykhhasan M, Manoochehri H, Dama P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther. 2022;29(8):1080-96. DOI: https://doi.org/10.1038/s41417-021-00418-1 PMid:34987176 PMCid:PMC9395272

Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Revolutionization in cancer therapeutics via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals. 2022;15(3):335. DOI: https://doi.org/10.3390/ph15030335 PMid:35337133 PMCid:PMC8952773

Kharkar PS, Jadhav AL. Gene‐Directed Enzyme-Prodrug Therapy (GDEPT) as a Suicide Gene Therapy Modality for Cancer Treatment. Target. Drug Deliv. 2022:155-68. DOI: https://doi.org/10.1002/9783527827855.ch6

Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 2022;153:113324. DOI: https://doi.org/10.1016/j.biopha.2022.113324 PMid:35779421

Singh V, Khan N, Jayandharan GR. Vector engineering, strategies and targets in cancer gene therapy. J. Breast Cancer. 2022;29(5):402-17. DOI: https://doi.org/10.1038/s41417-021-00331-7 PMid:33859378

Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023;14:1127704. DOI: https://doi.org/10.3389/fimmu.2023.1127704 PMid:36969193 PMCid:PMC10033545

Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 2021;269:119087. DOI: https://doi.org/10.1016/j.lfs.2021.119087 PMid:33476633

Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech. 2023;13(1):18. DOI: https://doi.org/10.1007/s13205-022-03421-x PMid:36568500 PMCid:PMC9768089

Pinto IS, Cordeiro RA, Faneca H. Polymer-and lipid-based gene delivery technology for CAR T cell therapy. J. Control. Release. 2023;353:196-215. DOI: https://doi.org/10.1016/j.jconrel.2022.11.038 PMid:36423871

Luiz MT, Dutra JA, Tofani LB, de Araújo JT, Di Filippo LD, Marchetti JM, Chorilli M. Targeted liposomes: A nonviral gene delivery system for cancer therapy. Pharmaceutics. 2022;14(4):821. DOI: https://doi.org/10.3390/pharmaceutics14040821 PMid:35456655 PMCid:PMC9030342

Pinto IS, Cordeiro RA, Faneca H. Polymer-and lipid-based gene delivery technology for CAR T cell therapy. J. Control. Release. 2023;353:196-215. DOI: https://doi.org/10.1016/j.jconrel.2022.11.038 PMid:36423871

Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med. 2018;20(5):e3015. DOI: https://doi.org/10.1002/jgm.3015 PMid:29575374

Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli‐responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci. 2022;9(5):2103444. DOI: https://doi.org/10.1002/advs.202103444 PMid:34927373 PMCid:PMC8844476

Guishard AF, Yakisich JS, Azad N, Iyer AK. Translational gap in ongoing clinical trials for glioma. J. Clin. Neurosci. 2018;47:28-42. DOI: https://doi.org/10.1016/j.jocn.2017.10.001 PMid:29066236 PMCid:PMC5733731

Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Curr. Gene Ther. 2020;20(2):127-41. DOI: https://doi.org/10.2174/1566523220999200731003206 PMid:32951572

Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A. Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Medical Sciences. 2023;11(2):42. DOI: https://doi.org/10.3390/medsci11020042 PMid:37367741 PMCid:PMC10304137

Wang Q, Shi Q, Chen Y, Wang G, Shen L. Recombinant human p53 adenovirus injection combined with Bortezomib inhibits proliferation and promotes apoptosis in multiple myeloma. Leukemia Research. 2023;127:107041. DOI: https://doi.org/10.1016/j.leukres.2023.107041 PMid:36801701

Ganesh K, Massagué J. Targeting metastatic cancer. Nature medicine. 2021;27(1):34-44.DOI: https://doi.org/10.1038/s41591-020-01195-4 PMid:33442008 PMCid:PMC7895475

Zhang J, Chen B, Gan C, Sun H, Zhang J, Feng L. A comprehensive review of small interfering RNAs (siRNAs): mechanism, therapeutic targets, and delivery strategies for cancer therapy. International J. Nanomed. 2023:7605-35. DOI: https://doi.org/10.2147/IJN.S436038 PMid:38106451 PMCid:PMC10725753

Maiti S, Paira P. Biotin conjugated organic molecules and proteins for cancer therapy: A review. Eur. J. Med. Chem. 2018;145:206-23. DOI: https://doi.org/10.1016/j.ejmech.2018.01.001 PMid:29324341

Subhan MA, Torchilin VP. Efficient nanocarriers of siRNA therapeutics for cancer treatment. Translational Research. 2019;214:62-91. DOI: https://doi.org/10.1016/j.trsl.2019.07.006 PMid:31369717

Ali WM, Alhumaidi MS. Artificial Intelligence for Cancer Diagnosis & Radiology. Int. J. Trends Oncosci. 2023:13-8.

Hughes KS, Zhou J, Bao Y, Singh P, Wang J, Yin K. Natural language processing to facilitate breast cancer research and management. Breast J. 2020;26(1):92-9. DOI: https://doi.org/10.1111/tbj.13718 PMid:31854067

Çinar A, Yildirim M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical hypotheses. 2020;139:109684. DOI: https://doi.org/10.1016/j.mehy.2020.109684 PMid:32240877

Tunali I, Gillies RJ, Schabath MB. Application of radiomics and artificial intelligence for lung cancer precision medicine. Cold Spring Harb. Perspect. 2021;11(8):a039537. DOI: https://doi.org/10.1101/cshperspect.a039537 PMid:33431509 PMCid:PMC8288444

Ho D. Artificial intelligence in cancer therapy. Science. 2020;367(6481):982-3. DOI: https://doi.org/10.1126/science

Park HJ, Lee SH, Chang YS. Recent advances in diagnostic technologies in lung cancer. Korean J. Intern. Med. 2020;35(2):257. DOI: https://doi.org/10.3904/kjim.2020.030 PMid:32131569 PMCid:PMC7060993

Meenalochini G, Ramkumar S. Survey of machine learning algorithms for breast cancer detection using mammogram images. Mater. Today Proc. 2021;37:2738-43. DOI: https://doi.org/10.1016/j.matpr.2020.08.543

Chen PC, Lu YR, Kang YN, Chang CC. The accuracy of artificial intelligence in the endoscopic diagnosis of early gastric cancer: pooled analysis study. J. Med. Internet Res. 2022;24(5):e27694. DOI: https://doi.org/10.2196/27694 PMid:35576561 PMCid:PMC9152716

Koh DM, Papanikolaou N, Bick U, Illing R, Kahn Jr CE, Kalpathi-Cramer J, Matos C, Martí-Bonmatí L, Miles A, Mun SK, Napel S. Artificial intelligence and machine learning in cancer imaging. Commun. Med. 2022;2(1):133. DOI: https://doi.org/10.1038/s43856-022-00199-0 PMid:36310650 PMCid:PMC9613681

Das AK, Biswas SK, Mandal A, Bhattacharya A, Sanyal S. Machine learning based intelligent system for breast cancer prediction (MLISBCP). Expert Syst. Appl. 2024;242:122673. DOI: https://doi.org/10.1016/j.eswa.2023.122673

Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: systematic literature review. JMIR Med. Inform. 2020;8(7):e18599. DOI: https://doi.org/10.2196/18599 PMid:32706688 PMCid:PMC7414411

Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm. 2018;1:139-57. DOI: https://doi.org/10.5772/intechopen.76558

Venigandla K. Integrating RPA with AI and ML for Enhanced Diagnostic Accuracy in Healthcare. Power Syst. Technol. 2022;46(4).

Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med. 2018;20(5):e3015. DOI: https://doi.org/10.1002/jgm.3015 PMid:29575374

García-Sáenz JÁ, Martínez-Jáñez N, Cubedo R, Jerez Y, Lahuerta A, González-Santiago S, Ferrer N, Ramos M, Alonso-Romero JL, Antón A, Carrasco E. Sapanisertib plus fulvestrant in postmenopausal women with estrogen receptor-positive/HER2-negative advanced breast cancer after progression on aromatase inhibitor. Clin. Cancer Res. 2022;28(6):1107-16. DOI: https://doi.org/10.1158/1078-0432.CCR-21-2652 PMid:34980598 PMCid:PMC9365359

Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 2022;153:113324. DOI: https://doi.org/10.1016/j.biopha.2022.113324 PMid:35779421

Chang JS, Chang JH, Kim N, Kim YB, Shin KH, Kim K. Intensity modulated radiotherapy and volumetric modulated arc therapy in the treatment of breast cancer: an updated review. J. Breast Cancer. 2022;25(5):349.DOI: https://doi.org/10.4048/jbc.2022.25.e37 PMid:36265885 PMCid:PMC9629965

Mabeta P, Hull R, Dlamini Z. LncRNAs and the angiogenic switch in cancer: clinical significance and therapeutic opportunities. Genes. 2022;13(1):152. DOI: https://doi.org/10.3390/genes13010152 PMid:35052495 PMCid:PMC8774855

Chen Z, Kankala RK, Long L, Xie S, Chen A, Zou L. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Coord. Chem. Rev. 2023;481:215051.DOI: https://doi.org/10.1016/j.ccr.2023.215051

Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol. 2023;24(11):816-34. DOI: https://doi.org/10.1038/s41580-023-00631-w PMid:37491579

Swethasri R, Chaitanya K, Sumakanth M. A Review On Analytical Techniques for Herbal Anticancer Nano Medicine: Oncology-Nano herbals. Int. J. Trends Oncosci. 2023:1-0.

Aminabee SH, Rao AL, Alimunnisa S, Vani VB. Recent advances in cancer therapy. Int J Life Sci Pharma Res. 2020;2:144-6.

Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat. Commun. 2024;15(1):8172. DOI: https://doi.org/10.1038/s41467-024-52416-0 PMid:39289401 PMCid:PMC11408679

Basha M. Nanotechnology as a promising strategy for anticancer drug delivery. Curr. Drug Deliv. 2018;15(4):497-509. DOI: https://doi.org/10.2174/1567201814666170516114411 PMid:28521696

Salavati H, Debbaut C, Pullens P, Ceelen W. Interstitial fluid pressure as an emerging biomarker in solid tumors. Biochim. Biophys. Acta Rev. Cancer. 2022;1877(5):188792. DOI: https://doi.org/10.1016/j.bbcan.2022.188792 PMid:36084861

Khan S, Bjij I, Soliman ME. Selective covalent inhibition of "Allosteric Cys121" distorts the binding of PTP1B enzyme: a novel therapeutic approach for cancer treatment. Cell Biochem. Biophys. 2019;77:203- 11. DOI: https://doi.org/10.1007/s12013-019-00882-5 PMid:31446553

Kaur N, Popli P, Tiwary N, Swami R. Small molecules as cancer targeting ligands: Shifting the paradigm. J. Control. Release. 2023;355:417-33. DOI: https://doi.org/10.1016/j.jconrel.2023.01.032 PMid:36754149

Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent advances in stimulus‐responsive nanocarriers for gene therapy. Adv. Sci. 2021;8(14):2100540. DOI: https://doi.org/10.1002/advs.202100540 PMid:34306980 PMCid:PMC8292848

Chanda C, Maganti M, Chunduru M, Veeramachaneni PG, Srikonda P, Anjum SM, Dondapati K, Manne AA. Monitoring Cellular Immune Responses in Cancer Therapy. Int. J. Life Sci. Pharma Res.2020;10(5):L121-126. DOI: https://doi.org/10.22376/ijpbs/lpr.2020.10.5.L121-126

Alsina M, Arrazubi V, Diez M, Tabernero J. Current developments in gastric cancer: molecular profiling to treatment strategy. Nat. Rev. Gastroenterol. Hepatol. 2023;20(3):155-70.DOI: https://doi.org/10.1038/s41575-022-00703-w PMid:36344677

Blagosklonny MV. Selective protection of normal cells from chemotherapy while killing drug-resistant cancer cells. Oncotarget. 2023;14:193. DOI: https://doi.org/10.18632/oncotarget.28382 PMid:36913303 PMCid:PMC10010629

Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced permeability and retention effect: A key facilitator for nanoparticle solid tumor targeting. Photodiagn. Photodyn. Ther. 2022;39:102915. DOI: https://doi.org/10.1016/j.pdpdt.2022.102915 PMid:35597441

van den Boogaard WM, Komninos DS, Vermeij WP. Chemotherapy side-effects: not all DNA damage is equal. Cancers. 2022;14(3): 627. DOI: https://doi.org/10.3390/cancers14030627 PMid:35158895 PMCid:PMC8833520

Didamson OC, Chandran R, Abrahamse H. A gold nanoparticle bioconjugate delivery system for active targeted photodynamic therapy of cancer and cancer stem cells. Cancers. 2022;14(19):4558. DOI: https://doi.org/10.3390/cancers14194558 PMid:36230480 PMCid:PMC9559518

Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, Sethi G. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances. Environ. Res. 2023;233:116476. DOI: https://doi.org/10.1016/j.envres.2023.116476 PMid:37348632

Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-density lipoprotein receptor-related protein 8 at the crossroad between cancer and neurodegeneration. Int. J. Mol. Sci. 2022;23(16):8921.DOI: https://doi.org/10.3390/ijms23168921 PMid:36012187 PMCid:PMC9408729

Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: Recent trends in targeted therapy of cancer. Expert Opin. Drug Deliv. 2022;19(6):685-705. DOI: https://doi.org/10.1080/17425247.2022.2083106 PMid:35698794

Vadevoo SM, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023 ;55(6):1099-109.DOI: https://doi.org/10.1038/s12276-023-01016-x PMid:37258584 PMCid:PMC10318096

Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int. J. Mol. Sci. 2020;21(23):9123. DOI: https://doi.org/10.3390/ijms21239123 PMid:33266216 PMCid:PMC7730239

Al Saqr A, Wani SU, Gangadharappa HV, Aldawsari MF, Khafagy ES, Lila AS. Enhanced cytotoxic activity of docetaxel-loaded silk fibroin nanoparticles against breast cancer cells. Polymers. 2021;13(9):1416. DOI: https://doi.org/10.3390/polym13091416 PMid:33925581 PMCid:PMC8123888

Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed. Pharmacother. 2022;146:112530. DOI: https://doi.org/10.1016/j.biopha.2021.112530 PMid:34915416

Quan Y, He J, Zou Q, Zhang L, Sun Q, Huang H, Li W, Xie K, Wei F. Low molecular weight heparin synergistically enhances the efficacy of adoptive and anti-PD-1-based immunotherapy by increasing lymphocyte infiltration in colorectal cancer. J. Immunother. Cancer. 2023;11(8). DOI: https://doi.org/10.1136/jitc-2023-007080 PMid:37597850 PMCid:PMC10441131

Chen L, Musa AE. Boosting immune system against cancer by resveratrol. Phytother. Res. 2021;35(10):5514-26. DOI: https://doi.org/10.1002/ptr.7189 PMid:34101276

Shiravand Y, Khodadadi F, Kashani SM, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022;29(5):3044-60. DOI: https://doi.org/10.3390/curroncol29050247 PMid:35621637 PMCid:PMC9139602

Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, Rahmanpour D, Fattahi S, Shabani H, Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathol. Res. Pract. 2022;229:153723. DOI: https://doi.org/10.1016/j.prp.2021.153723 PMid:34952426

Echeverry G, Fischer GW, Mead E. Next generation of cancer treatments: chimeric antigen receptor T-cell therapy and its related toxicities: a review for perioperative physicians. Anesth. Analg. 2019;129(2):434-41. DOI: https://doi.org/10.1213/ANE.0000000000004201 PMid:31124841 PMCid:PMC8592462

Mahadevia H, Ananthamurugan M, Shah K, Desai A, Shrestha A. A Review of Anti-CD20 Antibodies in the Management of B-Cell Lymphomas. Lymphatics. 2024;2(1):10-24. DOI: https://doi.org/10.3390/lymphatics2010002

Razzak Mahmood, D. A., S. Srinivasan, and C. Emmanuel E. S. "Precision Targeting and Genetically Modified T Cells for Targeting Cancer Cells. Int. J. Trends Oncosci. 2024;2(1): 1-9. DOI: https://doi.org/10.22376/ijtos.2023.2.1.1-9

Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, Shademan B, Isazadeh A, Baradaran B. Chimeric antigen receptor T (CAR‐T) cells: Novel cell therapy for hematological malignancies. Cancer Med. 2023;12(7):7844-58. DOI: https://doi.org/10.1002/cam4.5551 PMid:36583504 PMCid:PMC10134288

Zoine JT, Knight KA, Fleischer LC, Sutton KS, Goldsmith KC, Doering CB, Spencer HT. Ex vivo expanded patient-derived γδ T-cell immunotherapy enhances neuroblastoma tumor regression in a murine model. Oncoimmunology. 2019.DOI: https://doi.org/10.1080/2162402X.2019.1593804 PMid:31413905 PMCid:PMC6682349

Altenburg AF, van de Sandt CE, Li BW, MacLoughlin RJ, Fouchier RA, van Amerongen G, Volz A, Hendriks RW, de Swart RL, Sutter G, Rimmelzwaan GF. Modified vaccinia virus Ankara preferentially targets antigen presenting cells in vitro, ex vivo, and in vivo. Sci. Rep. 2017;7(1):8580. DOI: https://doi.org/10.1038/s41598-017-08719-y PMid:28819261 PMCid:PMC5561217

Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of modified vaccinia virus ankara-based vaccines: advantages and applications. Vaccines. 2022;10(9):1516. DOI: https://doi.org/10.3390/vaccines10091516 PMid:36146594 PMCid:PMC9503770

Aparicio C, Acebal C, González-Vallinas M. Current approaches to develop "off-the-shelf" chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review. Exp. Hematol. Oncol. 2023;12(1):73. DOI: https://doi.org/10.1186/s40164-023-00435-w PMid:37605218 PMCid:PMC10440917

Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark. Res. 2018; 6:1-0. DOI: https://doi.org/10.1186/s40364-018-0116-0 PMid:29387417 PMCid:PMC5778792

Casanova I, Prada A, De Silanes CL, Gonzaga L, Barrio L, Eimil M, Oyanguren B, Alcántara P, Saíz MÁ, Díaz B, González M. Neurological Complications in Systemic Inflammatory Diseases. Curr. Rheumatol. Rev. 2023;19(1):42-8. DOI: https://doi.org/10.2174/1573397118666220518094207 PMid:35593339

Dey A, Ghosh S, Jha S, Hazra S, Srivastava N, Chakraborty U, Roy AG. Recent advancement in breast cancer treatment using CAR T cell therapy review. Adv. Cancer Biol. Metastasis. 2023;7:100090. DOI: https://doi.org/10.1016/j.adcanc.2023.100090

Adam A, Koranteng F. Availability, accessibility, and impact of social support on breast cancer treatment among breast cancer patients in Kumasi, Ghana: A qualitative study. PLoS One. 2020;15(4): e0231691. DOI: https://doi.org/10.1371/journal.pone.0231691 PMid:32298340 PMCid:PMC7162460

June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361-5. DOI: https://doi.org/10.1126/science

Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Villaseñor-García MM, Aguilar-Lemarroy A, Jave-Suárez LF. A gene expression signature in HER2+ breast cancer patients related to neoadjuvant chemotherapy resistance, overall survival, and disease-free survival. Front. Genet. 2022;13:991706. DOI: https://doi.org/10.3389/fgene.2022.991706 PMid:36338974 PMCid:PMC9634254

Taubmann J, Müller F, Boeltz S, Völkl S, Aigner M, Kleyer A, Minnopoulou I, Locatelli F, D'agostino MA, Gary R, Krestchmann S. OP0141 long term safety and efficacy of CAR-T cell treatment in refractory systemic lupus erythematosus-data from the first seven patients.

Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J. Biosci. 2020;45(1):135. DOI: https://doi.org/10.1007/s12038-020-00099-2 PMid:33184251

Kato M, Chen Z, Das S, Wu X, Wang J, Li A, Chen W, Tsark W, Tunduguru R, Lanting L, Wang M. Long non-coding RNA lncMGC mediates the expression of TGF-β-induced genes in renal cells via nucleosome remodelers. Front. Mol. Biosci. 2023;10: 1204124. DOI: https://doi.org/10.3389/fmolb.2023.1204124 PMid:37325470 PMCid:PMC10266347

Szczepanek J, Skorupa M, Jarkiewicz-Tretyn J, Cybulski C, Tretyn A. Harnessing epigenetics for breast cancer therapy: The role of DNA methylation, histone modifications, and MicroRNA. Int. J. Mol. Sci. 2023;24(8):7235. DOI: https://doi.org/10.3390/ijms24087235 PMid:37108398 PMCid:PMC10138995

Bates SE. Epigenetic cancer therapies. N. Engl. J. Med. 2020;383(7):650-63. DOI: https://doi.org/10.1056/NEJMra1805035 PMid:32786190

Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumor immunogenicity and immune evasion. Nat. Rev. Cancer. 2021;21(5):298-312. DOI: https://doi.org/10.1038/s41568-021-00339-z PMid:33750922

Liang Y, Wang L, Ma P, Ju D, Zhao M, Shi Y. Enhancing anti-tumor immune responses through combination therapies: epigenetic drugs and immune checkpoint inhibitors. Front. Immunol. 2023;14:1308264. DOI: https://doi.org/10.3389/fimmu.2023.1308264 PMid:38077327 PMCid:PMC10704038

Ortega-Rivera OA, Quintanar JL, Toro-Arreola D, Alpuche-Solis ÁG, Esparza-Araiza MJ, Salinas E. Antitumor and immunostimulatory activities of a genotype V recombinant attenuated veterinary Newcastle disease virus vaccine. Oncol. Lett. 2018;15(1):1246-54. DOI: https://doi.org/10.3892/ol.2017.7387 PMid:29399179 PMCid:PMC5772752

Karin M, Shalapour S. Regulation of antitumor immunity by inflammation-induced epigenetic alterations. Cell. Mol. Immunol. 2022;19(1):59-66. DOI: https://doi.org/10.1038/s41423-021-00756-y PMid:34465885 PMCid:PMC8752743

Le DT, Picozzi VJ, Ko AH, Wainberg ZA, Kindler H, Wang-Gillam A, Oberstein P, Morse MA, Zeh III HJ, Weekes C, Reid T. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE study). Clin. Cancer Res. 2019;25(18):5493-502. DOI: https://doi.org/10.1158/1078-0432.CCR-18-2992 PMid:31126960 PMCid:PMC7376746

Suzuki N, Shindo Y, Nakajima M, Tsunedomi R, Nagano H. Current status of vaccine immunotherapy for gastrointestinal cancers. Surg. Today. 2023:1-3. DOI: https://doi.org/10.1007/s00595-023-02773-y PMid:38043066

Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer. 2021;124(2):359-67. DOI: https://doi.org/10.1038/s41416-020-01048-4 PMid:32929195 PMCid:PMC7853123

Santoro M, Strolin S, Paolani G, Della Gala G, Bartoloni A, Giacometti C, Ammendolia I, Morganti AG, Strigari L. Recent applications of artificial intelligence in radiotherapy: where we are and beyond. Appl. Sci. 2022;12(7):3223. DOI: https://doi.org/10.3390/app12073223

McCann E, O'Sullivan J, Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl. Oncol. 2021;14(1):100905. DOI: https://doi.org/10.1016/j.tranon.2020.100905 PMid:33069104 PMCid:PMC7562988

Tran WT, Jerzak K, Lu FI, Klein J, Tabbarah S, Lagree A, Wu T, Rosado-Mendez I, Law E, Saednia K, Sadeghi Naini A. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. J. Med. Imaging Radiat. Sci. 2019;50(4):S32-41. DOI: https://doi.org/10.1016/j.jmir.2019.07.010 PMid:31447230

Xu F, Sepúlveda MJ, Jiang Z, Wang H, Li J, Liu Z, Yin Y, Roebuck MC, Shortliffe EH, Yan M, Song Y. Effect of an artificial intelligence clinical decision support system on treatment decisions for complex breast cancer. JCO Clin. Cancer Inform. 2020;4:824-38. DOI: https://doi.org/10.1200/CCI.20.00018 PMid:32970484 PMCid:PMC7529515

Wang RC, Wang Z. Precision medicine: disease subtyping and tailored treatment. Cancers. 2023;15(15):3837. DOI: https://doi.org/10.3390/cancers15153837 PMid:37568653 PMCid:PMC10417651

Wahid KA, Glerean E, Sahlsten J, Jaskari J, Kaski K, Naser MA, He R, Mohamed AS, Fuller CD. Artificial intelligence for radiation oncology applications using public datasets. Semin. Radiat. Oncol. 2022;32(4):400-414. WB Saunders. DOI: https://doi.org/10.1016/j.semradonc.2022.06.009 PMid:36202442 PMCid:PMC9587532

Bäumer N, Scheller A, Wittmann L, Faust A, Apel M, Nimmagadda SC, Geyer C, Grunert K, Kellmann N, Peipp M, Kailayangiri S. Electrostatic anti-CD33-antibody-protamine nanocarriers as platform for a targeted treatment of acute myeloid leukemia. J. Hematol. Oncol. 2022;15(1):171. DOI: https://doi.org/10.1186/s13045-022-01390-5 PMid:36457063 PMCid:PMC9716776

Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer. 2023;9(5):381-96. DOI: https://doi.org/10.1016/j.trecan.2023.02.001 PMid:36841748 PMCid:PMC10121860

Loibl S, Huang CS, Mano MS, Mamounas EP, Geyer Jr CE, Untch M, Thery JC, Schwaner I, Limentani S, Loman N, Lübbe K. Adjuvant trastuzumab emtansine in HER2-positive breast cancer patients with HER2-negative residual invasive disease in KATHERINE. NPJ Breast Cancer. 2022;8(1):106. DOI: https://doi.org/10.1038/s41523-022-00477-z PMid:36117201 PMCid:PMC9482917

Mokhtar HE, Xu A, Xu Y, Fadlalla MH, Wang S. Preparation of monoclonal antibody against deoxynivalenol and development of immunoassays. Toxins. 2022;14(8):533. DOI: https://doi.org/10.3390/toxins14080533 PMid:36006195 PMCid:PMC9415657

Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, del Moral-Hernández O, Vences-Velázquez A, Cortés-Sarabia K, Alarcón-Romero LD. Mechanisms of action and limitations of monoclonal antibodies and single chain fragment variable (scFv) in the treatment of cancer. Biomedicines. 2023;11(6):1610. DOI: https://doi.org/10.3390/biomedicines11061610 PMid:37371712 PMCid:PMC10295864

Chai H, Zhou X, Zhang Z, Rao J, Zhao H, Yang Y. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput. Biol. Med. 2021;134:104481. DOI: https://doi.org/10.1016/j.compbiomed.2021.104481 PMid:33989895

Yang Y, Zhang G, Hu C, Luo W, Jiang H, Liu S, Yang H. The germline mutational landscape of genitourinary cancers and its indication for prognosis and risk. BMC Urol. 2022;22(1):196. DOI: https://doi.org/10.1186/s12894-022-01141-1 PMid:36451132 PMCid:PMC9710079

DeFrank J, Luiz A. AI-based personalized treatment recommendation for cancer patients. J. Carcinog. 202;21(2). DOI: https://doi.org/10.54254/2753-8818/21/20230801

Arbour KC, Luu AT, Luo J, Rizvi H, Plodkowski AJ, Sakhi M, Huang KB, Digumarthy SR, Ginsberg MS, Girshman J, Kris MG. Deep learning to estimate RECIST in patients with NSCLC treated with PD-1 blockade. Cancer Discov. 2021;11(1):59-67. DOI: https://doi.org/10.1158/2159-8290.CD-20-0419 PMid:32958579 PMCid:PMC7981277

Xu F, Sepúlveda MJ, Jiang Z, Wang H, Li J, Liu Z, Yin Y, Roebuck MC, Shortliffe EH, Yan M, Song Y. Effect of an artificial intelligence clinical decision support system on treatment decisions for complex breast cancer. JCO Clin. Cancer Inform. 2020:824-38. DOI: https://doi.org/10.1200/CCI.20.00018 PMid:32970484 PMCid:PMC7529515

Zhang T, Tan T, Wang X, Gao Y, Han L, Balkenende L, D'Angelo A, Bao L, Horlings HM, Teuwen J, Beets-Tan RGH, Mann RM. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease. Cell Rep Med. 2023;4(8):101131. DOI: https://doi.org/10.1016/j.xcrm.2023.101131 PMid:37490915 PMCid:PMC10439251

Beauchemin M, Murray MT, Sung L, Hershman DL, Weng C, Schnall R. Clinical decision support for therapeutic decision-making in cancer: A systematic review. Int. J. Med. Inform. 2019;130:103940. DOI: https://doi.org/10.1016/j.ijmedinf.2019.07.019 PMid:31450082 PMCid:PMC7024607

Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, Compas C, Martin C, Costa AB, Flores MG, Zhang Y. A large language model for electronic health records. NPJ Digit. Med. 2022;5(1):194. DOI: https://doi.org/10.1038/s41746-022-00742-2 PMid:36572766 PMCid:PMC9792464

Tseha ST. Role of adenoviruses in cancer therapy. Front. Oncol. 2022;12:772659. DOI: https://doi.org/10.3389/fonc.2022.772659 PMid:35756634 PMCid:PMC9218278

Qi L, Li G, Li P, Wang H, Fang X, He T, Li J. Twenty years of Gendicine® rAd-p53 cancer gene therapy: The first-in-class human cancer gene therapy in the era of personalized oncology. Genes Dis. 2023:101155. DOI: https://doi.org/10.1016/j.gendis.2023.101155 PMid:38523676 PMCid:PMC10958704

Guo Z, Guan K, Bao M, He B, Lu J. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function. Pathol. Res. Pract. 2024;260:155460. DOI: https://doi.org/10.1016/j.prp.2024.155460 PMid:39032384

Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics. 2022;19(4):1145-58. DOI: https://doi.org/10.1007/s13311-022-01247-2 PMid:35653060 PMCid:PMC9587169

Jayaraman M, Dutta P, Arora K, Sivakumar D, Telang J, Raghavendran HR, Nagarajan K. Mesenchymal Stem Cell Mediated Suicide Gene Therapy. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022 -1-16. Singapore: Springer Singapore. DOI: https://doi.org/10.1007/978-981-16-1247-3_107-1 PMid:36855744 PMCid:PMC9954244

Day MA, Christofferson AJ, Anderson JR, Vass SO, Evans A, Searle PF, White SA, Hyde EI. Structure and dynamics of three Escherichia coli NfsB nitro-reductase mutants selected for enhanced activity with the cancer prodrug CB1954. Int. J. Mol. Sci. 2023;24(6):5987. DOI: https://doi.org/10.3390/ijms24065987 PMid:36983061 PMCid:PMC10051150

Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene therapy for high grade glioma: the clinical experience. Expert Opin. Biol. Ther. 2023;23(2):145-61. DOI: https://doi.org/10.1080/14712598.2022.2157718 PMid:36510843 PMCid:PMC9998375

Oronsky B, Gastman B, Conley AP, Reid C, Caroen S, Reid T. Oncolytic adenoviruses: the cold war against cancer finally turns hot. Cancers. 2022;14(19):4701. DOI: https://doi.org/10.3390/cancers14194701 PMid:36230621 PMCid:PMC9562194

Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front. Cell. Infect. Microbiol. 2023; 13:1206111. DOI: https://doi.org/10.3389/fcimb.2023.1206111 PMid:37325516 PMCid:PMC10264819

Kurdow R, Boehle AS, Ruhnke M, Mendoza R, Boenicke L, Sipos B, Schniewind B, Dohrmann P, Kalthoff H. Retroviral endostatin gene transfer inhibits growth of human lung cancer in a murine orthotopic xenotransplant model. Langenbecks Arch. Surg. 2003;388:401-5. DOI: https://doi.org/10.1007/s00423-003-0400-8 PMid:12898260

Palomäki J, Kalke K, Orpana J, Lund L, Frejborg F, Paavilainen H, Järveläinen H, Hukkanen V. Attenuated Replication-Competent Herpes Simplex Virus Expressing an ECM-Modifying Transgene Hyaluronan Synthase 2 of Naked Mole Rat in Oncolytic Gene Therapy. Microorganisms. 2023;11(11):2657. DOI: https://doi.org/10.3390/microorganisms11112657 PMid:38004669 PMCid:PMC10673056

Downloads

Published

2024-12-01

How to Cite

1.
Chithra RA, Osman Elamin M, Karande S. Recent and Advanced Trends in Cancer Treatments. Natl J Community Med [Internet]. 2024 Dec. 1 [cited 2024 Dec. 21];15(12):1090-107. Available from: https://njcmindia.com/index.php/file/article/view/4714

Issue

Section

Review Articles