Decision-Making Logic Model for Risk Stratification Using iALERTS (Informatics Analytics for Long-Term Evaluation and Repercussions Tracking Of SARS-Cov-2 Infection)
DOI:
https://doi.org/10.55489/njcm.160920255736Keywords:
Long COVID, Post-Acute Sequelae of SARS-CoV-2, Clinical Decision Support System, Risk Stratification, Digital Health, Symptom Monitoring, Post-COVID ManagementAbstract
Background: Long COVID presents a significant public health challenge with its wide-ranging and persistent symptoms. However, there remains a lack of structured tools to identify, stratify, and manage individuals at risk of Long COVID. This study aims to develop the decision-making logic model for risk stratification using iALERTS platform.
Methods: This is a mixed-methods, quasi-experimental study. Data were collected from 684 adults with confirmed COVID-19 who were at least 12 weeks post-recovery. A validated survey captured sociodemographic data, clinical history, anthropometry, vaccination status, and a comprehensive symptom profile. A rule-based decision-making logic model was embedded within iALERTS, incorporating ten key factors to generate individualized risk assessments.
Results: Fatigue (80.8%), cough (83.3%), cognitive dysfunction (68.3%) and myalgia (74.3 %) were the most common persistent symptoms. High-risk groups included females, older adults, individuals with obesity, unvaccinated participants, and those hospitalized or admitted to ICU during acute infection. The logic model enabled automated risk stratification into low, moderate, or high categories, guiding clinical recommendations for monitoring, referrals, and rehabilitation.
Conclusion: The iALERTS platform offers a novel informatics-driven solution for risk stratification and management of Long COVID. Its decision logic integrates validated clinical and demographic predictors with real-time symptom data.
References
Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: An overview. Diabetes Metab Syndr. 2021 May-Jun;15(3):869-875. DOI: https://doi.org/10.1016/j.dsx.2021.04.007. Epub 2021 Apr 20. Erratum in: Diabetes Metab Syndr. 2022 May;16(5):102504. DOI: https://doi.org/10.1016/j.dsx.2022.102504. Erratum in: Diabetes Metab Syndr. 2022 Dec;16(12):102660. DOI: https://doi.org/10.1016/j.dsx.2022.102660. PMID: 33892403; PMCID: PMC8056514.
Koc HC, Xiao J, Liu W, Li Y, Chen G. Long COVID and its Management. International journal of biological sciences. 2022 Jul 11;18(12):4768. DOI: https://doi.org/10.7150/ijbs.75056 PMid:35874958 PMCid:PMC9305273
Crook H, Raza S, Nowell J, Young M, Edison P. Long covid mechanisms, risk factors, and management. bmj. 2021 Jul 26;374. DOI: https://doi.org/10.1136/bmj.n1648 PMid:34312178
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nature Reviews Microbiology. 2023 Mar;21(3):133-146. DOI: https://doi.org/10.1038/s41579-022-00846-2 PMid:36639608 PMCid:PMC9839201
António Ferreira Rodrigues Nogueira dos Santos M, Tygesen H, Eriksson H, Herlitz J. Clinical decision support system (CDSS)-effects on care quality. International Journal of Health Care Quality Assurance. 2014 Oct 7;27(8):707-718. DOI: https://doi.org/10.1108/IJHCQA-01-2014-0010 PMid:25417376
Lee DH, Jung HY, Kim MH, Lim ME, Kim DH, Han YW, Lee YW, Choi JH, Kim SH. Trends of clinical decision support system (CDSS). Electronics and telecommunications trends. 2016;31(4):77-85.
Ameri A, Ameri A, Salmanizadeh F, Bahaadinbeigy K. Clinical decision support systems (CDSS) in assistance to COVID‐19 diagnosis: A scoping review on types and evaluation methods. Health science reports. 2024 Feb;7(2):e1919. DOI: https://doi.org/10.1002/hsr2.1919 PMid:38384976 PMCid:PMC10879639
Moulaei K, Bahaadinbeigy K. Diagnosing, managing, and controlling COVID-19 using clinical decision support systems: a study to introduce CDSS applications. Journal of Biomedical Physics & Engineering. 2022 Apr 1;12(2):213-224. DOI: https://doi.org/10.31661/jbpe.v0i0.2105-1336 PMid:35433521 PMCid:PMC8995757
Suraj V, Del Vecchio Fitz C, Kleiman LB, Bhavnani SK, Jani C, Shah S, McKay RR, Warner J, Alterovitz G. SMART COVID navigator, a clinical decision support tool for COVID-19 treatment: Design and development study. Journal of Medical Internet Research. 2022 Feb 18;24(2):e29279. DOI: https://doi.org/10.2196/29279 PMid:34932493 PMCid:PMC8862760
Dugdale CM, Rubins DM, Lee H, McCluskey SM, Ryan ET, Kotton CN, Hurtado RM, Ciaranello AL, Barshak MB, McEvoy DS, Nelson SB. Coronavirus Disease 2019 (COVID-19) diagnostic clinical decision support: a pre-post implementation study of CORAL (COvid Risk cALculator). Clinical Infectious Diseases. 2021 Dec 15;73(12):2248-2256. DOI: https://doi.org/10.1093/cid/ciab111 PMid:33564833 PMCid:PMC7929052
Group TE. EuroQol-a new facility for the measurement of health-related quality of life. Health policy. 1990 Dec 1;16(3):199-208. DOI: https://doi.org/10.1016/0168-8510(90)90421-9 PMid:10109801
Klok FA, Boon GJAM, Barco S, Endres M, Geelhoed JJM, Knauss S, Rezek SA, Spruit MA, Vehreschild J, Siegerink B. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020 Jul 2;56(1):2001494. DOI: https://doi.org/10.1183/13993003.01494-2020 PMid:32398306 PMCid:PMC7236834
Rodríguez Onieva A, Vallejo Basurte C, Fernández Bersabé A, Camacho Cerro L, Valverde Bascón B, Muriel Sanjuan N, Soto Castro CA, García Morales V, Piedra Ruiz F, Hidalgo Requena A. Clinical characterization of the persistent COVID-19 symptoms: a descriptive observational study in primary care. Journal of Primary Care & Community Health. 2023 Nov;14:21501319231208283. DOI: https://doi.org/10.1177/21501319231208283 PMid:37947104 PMCid:PMC10638863
Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, Hu P, Guo L, Liu M, Xu J, Zhang X. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. The lancet. 2021 Aug 28;398(10302):747-758. DOI: https://doi.org/10.1016/S0140-6736(21)01755-4 PMid:34454673
Kozak R, Armstrong SM, Salvant E, Ritzker C, Feld J, Biondi MJ, Tsui H. Recognition of long-COVID-19 patients in a Canadian tertiary hospital setting: a retrospective analysis of their clinical and laboratory characteristics. Pathogens. 2021 Sep 26;10(10):1246. DOI: https://doi.org/10.3390/pathogens10101246 PMid:34684195 PMCid:PMC8537802
Venkatesan P. NICE guideline on long COVID. The lancet Respiratory medicine. 2021 Feb 1;9(2):129. DOI: https://doi.org/10.1016/S2213-2600(21)00031-X PMid:33453162
Asadi-Pooya AA, Akbari A, Emami A, Lotfi M, Rostamihosseinkhani M, Nemati H, Barzegar Z, Kabiri M, Zeraatpisheh Z, Farjoud-Kouhanjani M, Jafari A, Sasannia F, Ashrafi S, Nazeri M, Nasiri S, Shahisavandi M. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran J Med Sci. 2021 Nov;46(6):428-436. DOI: https://doi.org/10.30476/ijms.2021.92080.2326. PMID: 34840383 PMCID: PMC8611223
Su YJ, Kuo KC, Wang TW, Chang CW. Gender-based differences in COVID-19. New Microbes and New Infections. 2021 Jul 1;42:100905. DOI: https://doi.org/10.1016/j.nmni.2021.100905 PMid:34031638 PMCid:PMC8133826
Tan L, Kang X, Ji X, Li G, Wang Q, Li Y, Wang Q, Miao H. Validation of predictors of disease severity and outcomes in COVID-19 patients: a descriptive and retrospective study. Med. 2020 Dec 18;1(1):128-138. DOI: https://doi.org/10.1016/j.medj.2020.05.002 PMid:32838352 PMCid:PMC7235581
Chudzik M, Babicki M, Kapusta J, Kałuzińska-Kołat Ż, Kołat D, Jankowski P, Mastalerz-Migas A. Long-COVID clinical features and risk factors: a retrospective analysis of patients from the STOP-COVID registry of the PoLoCOV study. Viruses. 2022 Aug 11;14(8):1755. DOI: https://doi.org/10.3390/v14081755 PMid:36016376 PMCid:PMC9415629
Taquet M, Dercon Q, Luciano S, Geddes JR, Husain M, Harrison PJ. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS medicine. 2021 Sep 28;18(9):e1003773. DOI: https://doi.org/10.1371/journal.pmed.1003773 PMid:34582441 PMCid:PMC8478214
Ranzani OT, Bastos LS, Gelli JG, Marchesi JF, Baião F, Hamacher S, Bozza FA. Characterisation of the first 250 000 hospital admissions for COVID-19 in Brazil: a retrospective analysis of nationwide data. The Lancet Respiratory Medicine. 2021 Apr 1;9(4):407-418. DOI: https://doi.org/10.1016/S2213-2600(20)30560-9 PMid:33460571
Legler F, Meyer-Arndt L, Mödl L, Kedor C, Freitag H, Stein E, Hoppmann U, Rust R, Wittke K, Siebert N, Behrens J, Thiel A, Konietschke F, Paul F, Scheibenbogen C, Bellmann-Strobl J. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort. EClinicalMedicine. 2023 Aug 19;63:102146. doi: 10.1016/j.eclinm.2023.102146. DOI: https://doi.org/10.1016/j.eclinm.2023.102146 PMid:37662515 PMCid:PMC10469383
Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Pujol JC, Klaser K, Antonelli M, Canas LS, Molteni E. Attributes and predictors of long COVID. Nature medicine. 2021 Apr;27(4):626-631. DOI: https://doi.org/10.1038/s41591-021-01292-y PMid:33692530 PMCid:PMC7611399
Hu M, Song T, Gong Z, Che Q, Guo J, Chen L, Zhang H, Li H, Liang N, Zhao G, Wang Y. Symptom Trajectories and Clinical Subtypes in Post-COVID-19 Condition: Systematic Review and Clustering Analysis. JMIR Public Health and Surveillance. 2025 Jul 18;11(1):e72221. DOI: https://doi.org/10.2196/72221 PMid:40680300 PMCid:PMC12296217
Huang H, Cai S, Li Y, Li Y, Fan Y, Li L, Lei C, Tang X, Hu F, Li F, Deng X. Prognostic factors for COVID-19 pneumonia progression to severe symptoms based on earlier clinical features: a retrospective analysis. Frontiers in medicine. 2020 Oct 5;7:557453. DOI: https://doi.org/10.3389/fmed.2020.557453 PMid:33123541 PMCid:PMC7571455
Notarte KI, de Oliveira MH, Peligro PJ, Velasco JV, Macaranas I, Ver AT, Pangilinan FC, Pastrana A, Goldrich N, Kavteladze D, Gellaco MM. Age, sex and previous comorbidities as risk factors not associated with SARS-CoV-2 infection for long COVID-19: a systematic review and meta-analysis. Journal of clinical medicine. 2022 Dec 9;11(24):7314. DOI: https://doi.org/10.3390/jcm11247314 PMid:36555931 PMCid:PMC9787827
Jing X, Himawan L, Law T. Availability and usage of clinical decision support systems (CDSSs) in office-based primary care settings in the USA. BMJ Health & Care Informatics. 2019 Dec 8;26(1):e100015. DOI: https://doi.org/10.1136/bmjhci-2019-100015 PMid:31818828 PMCid:PMC7252956
Chen Z, Liang N, Zhang H, Li H, Yang Y, Zong X, Chen Y, Wang Y, Shi N. Harnessing the power of clinical decision support systems: challenges and opportunities. Open Heart. 2023 Nov 1;10(2):e002432. DOI: https://doi.org/10.1136/openhrt-2023-002432 PMid:38016787 PMCid:PMC10685930
Ullah I, Inayat T, Ullah N, Alzahrani F, Khan MI. Clinical decision support system (CDSS) for heart disease diagnosis and prediction by machine learning algorithms: A systematic literature review. Journal of Mechanics in Medicine and Biology. 2023 Dec 5;23(10):2330001. DOI:https://doi.org/10.1142/S0219519423300016
Sim LL, Ban KH, Tan TW, Sethi SK, Loh TP. Development of a clinical decision support system for diabetes care: A pilot study. PloS one. 2017 Feb 24;12(2):e0173021. DOI: https://doi.org/10.1371/journal.pone.0173021 PMid:28235017 PMCid:PMC5325565
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Krishna Mohan Surapaneni, Manmohan Singhal, Ashish Joshi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The authors retain the copyright of their article, with first publication rights granted to Medsci Publications.