Effects of the Meteorological Phenomena on the Female Reproductive System – A Narrative Review

Authors

DOI:

https://doi.org/10.55489/njcm.160320254874

Keywords:

Women reproductive health, Climate change, Humidity, Wind, Precipitation, Pressure, Extreme heat

Abstract

Introduction: Meteorological conditions affect female reproductive health, although little is known about their biological mechanisms. We undertook a narrative review to fill this gap by analyzing published research on how meteorological factors, including extreme temperatures, humidity, precipitation, pressure, and wind/storm, affect women's reproductive health. This review emphasizes the significance of environmental factors on reproductive health and guides future research.

Methods: We conducted a thorough literature survey on the effects of meteorological factors, systematically searching databases such as PubMed, Google Scholar, and Scopus. We scrutinized all the pertinent original articles, book chapters, reports, and news articles, classifying the impacts on gynecology, obstetrics, and cancer.

Results: Meteorological phenomena are susceptible to environmental changes and impact women's gynecological and obstetric health. Our research demonstrates that these meteorological phenomena may lead to gynaecologic effects such as endometriosis and PCOS. Furthermore, it causes hormonal imbalances and potentially disrupts blood flow, which leads to adverse pregnancy conditions such as miscarriages, stillbirths, preterm birth, low birth weight, and other effects like cancer.

Conclusion: Understanding these impacts is critical for developing strategies to mitigate adverse effects on female health and ensure sustainable protection in the face of changing climatic conditions.

References

Rajagopalan S, Landrigan PJ. Pollution and the heart. New England Journal of Medicine 2021;385(20):1881-92. DOI: https://doi.org/10.1056/NEJMra2030281 PMid:34758254

T Xu. AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 1316-1324.

Govorushko SM. Meteorological processes. Natural Processes and Human Impacts: Interactions between Humanity and the Environment. 2011:87-147. DOI: https://doi.org/10.1007/978-94-007-1424-3_3

Sorensen C, Saunik S, Sehgal M, et al. Climate change and women's health: Impacts and opportunities in India. GeoHealth 2018;2(10):283-97. DOI: https://doi.org/10.1029/2018GH000163 PMid:32159002 PMCid:PMC7007102

McElroy S, Ilango S, Dimitrova A, et al. Extreme heat, preterm birth, and stillbirth: A global analysis across 14 lower-middle income countries. Environment International 2022;158:106902. DOI: https://doi.org/10.1016/j.envint.2021.106902 PMid:34627013

Van Daalen K, Jung L, Dhatt R, et al. Climate change and gender-based health disparities. The Lancet Planetary Health 2020;4(2):e44-e45. DOI: https://doi.org/10.1016/S2542-5196(20)30001-2 PMid:32112742

Desai S, Chen F, Reddy S, et al. Measuring women's empowerment in the global south. Annual Review of Sociology 2022;48(1):507-27. DOI: https://doi.org/10.1146/annurev-soc-030420-015018

Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 2020;396(10258):1204-22. DOI: https://doi.org/10.1016/S0140-6736(20)30925-9 PMid:33069326

Charkoudian N, Stachenfeld N. Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Autonomic Neuroscience 2016;196:75-80. DOI: https://doi.org/10.1016/j.autneu.2015.11.004 PMid:26674572

Pappas A, Kovats S, Ranganathan M. Extreme weather events and maternal health in low-income and middle-income countries: a scoping review. BMJ open 2024;14(6):e079361. DOI: https://doi.org/10.1136/bmjopen-2023-079361 PMid:38830734 PMCid:PMC11149126

Münzel T, Steven S, Frenis K, et al. Environmental factors such as noise and air pollution and vascular disease. Antioxidants & redox signaling 2020;33(9):581-601. DOI: https://doi.org/10.1089/ars.2020.8090 PMid:32245334

Veras MM, de Souza Xavier Costa N, Fajersztajn L, et al. Impacts of Air Pollution on Reproductive Health. Air Pollution and Health Effects 2015:25-50. DOI: https://doi.org/10.1007/978-1-4471-6669-6_2

Proietti E, Röösli M, Frey U, et al. Air pollution during pregnancy and neonatal outcome: a review. Journal of aerosol medicine and pulmonary drug delivery 2013;26(1):9-23. DOI: https://doi.org/10.1089/jamp.2011.0932 PMid:22856675

Rao N, Anita Raj A. Women May Be More Vulnerable To Climate Change But Data Absent. 2019. Available from: https://www.indiaspend.com/women-may-be-more-vulnerable-to-climate-change-but-data-absent/ Accessed Feb 13th, 2025.

Beltran AJ, Wu J, Laurent O. Associations of meteorology with adverse pregnancy outcomes: a systematic review of preeclampsia, preterm birth and birth weight. International journal of environmental research and public health 2014;11(1):91-172. DOI: https://doi.org/10.3390/ijerph110100091 PMid:24362545 PMCid:PMC3924438

Boland MR, Fieder M, John LH, Rijnbeek PR, Huber S. Female Reproductive Performance and Maternal Birth Month: A Comprehensive Meta-Analysis Exploring Multiple Seasonal Mechanisms. Sci Rep. 2020 Jan 17;10(1):555. DOI: https://doi.org/10.1038/s41598-019-57377-9 PMid:31953469 PMCid:PMC6969210

Melo SA, Sugimoto H, O'Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer cell 2014;26(5):707-21. DOI: https://doi.org/10.1016/j.ccell.2014.09.005 PMid:25446899 PMCid:PMC4254633

Nori-Sarma A, Eliot MN, Whitsel EA, et al. Impact of long-term exposure to ambient particulate matter and nitrogen dioxide on chronic obstructive pulmonary disease: results from the Women's Health Initiative cohort. Environmental Research: Health 2024;2(3):035009. DOI: https://doi.org/10.1088/2752-5309/ad5ead

Venugopal V, Rekha S, Manikandan K, et al. Heat stress and inadequate sanitary facilities at workplaces-an occupational health concern for women? Global Health Action 2016;9(1):31945. DOI: https://doi.org/10.3402/gha.v9.31945 PMid:27633034 PMCid:PMC5025522

Lee M, Ohde S, Urayama KY, et al. Weather and health symptoms. International journal of environmental research and public health 2018;15(8):1670. DOI: https://doi.org/10.3390/ijerph15081670 PMid:30082669 PMCid:PMC6122079

Pan Z, Yu L, Shao M, et al. The influence of meteorological factors and total malignant tumor health risk in Wuhu city in the context of climate change. BMC Public Health 2023;23(1):346. DOI: https://doi.org/10.1186/s12889-023-15200-1 PMid:36797719 PMCid:PMC9933274

Danilenko KV, Sergeeva OY, Verevkin EG. Menstrual cycles are influenced by sunshine. Gynecological Endocrinology 2011;27(9):711-16. DOI: https://doi.org/10.3109/09513590.2010.521266 PMid:20937003

Tatsumi T, Sampei M, Saito K, et al. Age-dependent and seasonal changes in menstrual cycle length and body temperature based on big data. Obstetrics & Gynecology 2020;136(4):666-74. DOI: https://doi.org/10.1097/AOG.0000000000003910 PMid:32925608 PMCid:PMC7505142

Roach CM, Mayorga EJ, Baumgard LH, et al. Heat stress alters the ovarian proteome in prepubertal gilts. Journal of Animal Science 2024;102:skae053. DOI: https://doi.org/10.1093/jas/skae053 PMid:38605681 PMCid:PMC11025630

Segal TR, Giudice LC. Systematic review of climate change effects on reproductive health. Fertility and sterility 2022;118(2):215-23. DOI: https://doi.org/10.1016/j.fertnstert.2022.06.005 PMid:35878942

Shi Y, Tang L, Bai X, et al. Heat stress altered the vaginal microbiome and metabolome in rabbits. Frontiers in Microbiology 2022;13:813622. DOI: https://doi.org/10.3389/fmicb.2022.813622 PMid:35495670 PMCid:PMC9048824

Sommer M, Caruso BA. Menstrual hygiene management and WASH. Routledge Handbook of Water and Health: Routledge 2015:522-30.

Wesselink AK, Rosenberg L, Wise LA, et al. A prospective cohort study of ambient air pollution exposure and risk of uterine leiomyomata. Human Reproduction 2021;36(8):2321-30. DOI: https://doi.org/10.1093/humrep/deab095 PMid:33984861 PMCid:PMC8487660

Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 2020;15(11):e0242279. DOI: https://doi.org/10.1371/journal.pone.0242279 PMid:33186409 PMCid:PMC7665817

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity 2017;2017:8416763. DOI: https://doi.org/10.1155/2017/8416763 PMid:28819546 PMCid:PMC5551541

AlAshqar A, Lulseged B, Mason-Otey A, et al. Oxidative stress and antioxidants in uterine fibroids: pathophysiology and clinical implications. Antioxidants 2023;12(4):807. DOI: https://doi.org/10.3390/antiox12040807 PMid:37107181 PMCid:PMC10135366

Gharibi V, Khanjani N, Heidari H, et al. The effect of heat stress on hematological parameters and oxidative stress among bakery workers. Toxicology and industrial health 2020;36(1):1-10. DOI: https://doi.org/10.1177/0748233719899824 PMid:31934822

Hajdu T, Hajdu G. Post-conception heat exposure increases clinically unobserved pregnancy losses. Scientific reports 2021;11(1):1987. DOI: https://doi.org/10.1038/s41598-021-81496-x PMid:33479337 PMCid:PMC7820015

Ranciere F, Wafo O, Perrot X, et al. Associations between heat wave during pregnancy and term birth weight outcomes: The PARIS birth cohort. Environment International 2024;188:108730. DOI: https://doi.org/10.1016/j.envint.2024.108730 PMid:38776654

Jiajia W, Jing X, Qian Q, et al. Development of rice leaves: how histocytes modulate leaf polarity establishment. Rice Science 2020;27(6):468-79. DOI: https://doi.org/10.1016/j.rsci.2020.09.004

Chersich MF, Pham MD, Areal A, et al. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis. bmj 2020;371:m3811 DOI: https://doi.org/10.1136/bmj.m3811 PMid:33148618 PMCid:PMC7610201

Syed S, O'Sullivan TL, Phillips KP. Extreme heat and pregnancy outcomes: a scoping review of the epidemiological evidence. International journal of environmental research and public health 2022;19(4):2412. DOI: https://doi.org/10.3390/ijerph19042412 PMid:35206601 PMCid:PMC8874707

Kuehn L, McCormick S. Heat exposure and maternal health in the face of climate change. International journal of environmental research and public health 2017;14(8):853. DOI: https://doi.org/10.3390/ijerph14080853 PMid:28758917 PMCid:PMC5580557

Rekha S, Nalini SJ, Bhuvana S, Kanmani S, Hirst JE, Venugopal V. Heat stress and adverse pregnancy outcome: Prospective cohort study. BJOG: An International Journal of Obstetrics & Gynaecology 2024;131(5):612-22. DOI: https://doi.org/10.1111/1471-0528.17680 PMid:37814395

Stefanopoulou E, Hunter MS. Telephone-guided self-help cognitive behavioural therapy for menopausal symptoms. Maturitas 2014;77(1):73-77. DOI: https://doi.org/10.1016/j.maturitas.2013.09.013 PMid:24144959

Sievert LL, Flanagan EK. Geographical distribution of hot flash frequencies: considering climatic influences. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists 2005;128(2):437-43. DOI: https://doi.org/10.1002/ajpa.20293 PMid:15838836

Cucinella L, Tiranini L, Cassani C, Martella S, Nappi RE. Genitourinary Syndrome of Menopause in Breast Cancer Survivors: Current Perspectives on the Role of Laser Therapy. Int J Womens Health. 2023;15:1261-1282. DOI: https://doi.org/10.2147/IJWH.S414509 PMid:37576184 PMCid:PMC10422970

Nguyen NTK, Fan H-Y, Tsai M-C, et al. Nutrient intake through childhood and early menarche onset in girls: systematic review and meta-analysis. Nutrients 2020;12(9):2544. DOI: https://doi.org/10.3390/nu12092544 PMid:32842616 PMCid:PMC7551779

Canelón SP, Butts S, Boland MR. Evaluation of stillbirth among pregnant people with sickle cell trait. JAMA network open. 2021;4(11):e2134274. DOI: https://doi.org/10.1001/jamanetworkopen.2021.34274 PMid:34817585 PMCid:PMC8613600

Jansen E, Herrán O, Fleischer N, et al. Age at menarche in relation to prenatal rainy season exposure and altitude of residence: results from a nationally representative survey in a tropical country. Journal of developmental origins of health and disease 2017;8(2):188-95. DOI: https://doi.org/10.1017/S2040174416000751 PMid:28115035

Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. Journal of hematology & oncology 2020;13(1):104. DOI: https://doi.org/10.1186/s13045-020-00937-8 PMid:32723346 PMCid:PMC7385862

Marcovecchio ML, Chiarelli F. Obesity and growth during childhood and puberty. Nutrition and Growth 2013;106:135-41. DOI: https://doi.org/10.1159/000342545 PMid:23428692

Greenfield AM, Charkoudian N, Alba BK. Influences of ovarian hormones on physiological responses to cold in women. Temperature 2021;9(1):23-45. DOI: https://doi.org/10.1080/23328940.2021.1953688 PMid:35655670 PMCid:PMC9154773

Squicciarini V, Riquelme R, Wilsterman K, et al. Role of RFRP-3 in the development of cold stress-induced polycystic ovary phenotype in rats. Journal of Endocrinology 2018;239(1):81-91. DOI: https://doi.org/10.1530/JOE-18-0357 PMid:30307156

Wu T, Doyle C, Ito J, et al. Cold Exposures in Relation to Dysmenorrhea among Asian and White Women. International Journal of Environmental Research and Public Health 2024;21(1):56. DOI: https://doi.org/10.3390/ijerph21010056 PMid:38248521 PMCid:PMC10815354

Wang D, Cheng X, Fang H, Ren Y, Li X, Ren W, Xue B, Yang C. Effect of cold stress on ovarian & uterine microcirculation in rats and the role of endothelin system. Reprod Biol Endocrinol. 2020;18(1):29. DOI: https://doi.org/10.1186/s12958-020-00584-1 PMid:32290862 PMCid:PMC7155299

Van Zutphen AR, Hsu W-H, Lin S. Extreme winter temperature and birth defects: A population-based case-control study. Environmental research 2014;128:1-8. DOI: https://doi.org/10.1016/j.envres.2013.11.006 PMid:24407473

Guo J, Ruan Y, Wang Y, et al. Maternal Exposure to Extreme Cold Events and Risk of Congenital Heart Defects: A Large Multicenter Study in China. Environmental Science & Technology 2024;58(8):3737-46. DOI: https://doi.org/10.1021/acs.est.3c10306 DOI: PMid:38359432

Avery RL, Bakri SJ, Blumenkranz MS, et al. Intravitreal injection technique and monitoring: updated guidelines of an expert panel. Retina. 2014;34 Suppl 12:S1-S18. DOI: https://doi.org/10.1097/IAE.0000000000000399 PMid:25489719

Bruckner TA, Modin B, Vågerö D. Cold ambient temperature in utero and birth outcomes in Uppsala, Sweden, 1915-1929. Annals of Epidemiology 2014;24(2):116-21. DOI: https://doi.org/10.1016/j.annepidem.2013.11.005 PMid:24332864

Yu G, Yang L, Liu M, et al. Extreme temperature exposure and risks of preterm birth subtypes based on a Nationwide survey in China. Environmental Health Perspectives 2023;131(8):087009. DOI: https://doi.org/10.1289/EHP10831 PMid:37585350 PMCid:PMC10431497

Ruan T, Yue Y, Lu W, et al. Association between low ambient temperature during pregnancy and adverse birth outcomes: A systematic review and meta-analysis. Chinese Medical Journal 2023;136(19):2307-15. DOI: https://doi.org/10.1097/CM9.0000000000002361 PMid:36805588 PMCid:PMC10538931

Yang W-L, Sharma A, Wang Z, et al. Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome. Scientific reports 2016;6:26571. DOI: https://doi.org/10.1038/srep26571 PMid:27217302 PMCid:PMC4877585

Sharma A, Verma HK, Joshi S, et al. A link between cold environment and cancer. Tumor Biology 2015;36:5953-5964. DOI: https://doi.org/10.1007/s13277-015-3270-0 PMid:25736923

Kamiński M, Cieślik-Guerra UI, Kotas R, et al. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension. International Journal of Occupational Medicine and Environmental Health 2016;29(5):783-792. DOI: https://doi.org/10.13075/ijomeh.1896.00546 PMid:27518887

Bianchi-Demicheli F, Lüdicke F, Spinedi F, et al. Association between weather conditions and the incidence of emergency gynecological consultations. Gynecologic and obstetric investigation 2001;51(1):55-59. DOI: https://doi.org/10.1159/000052892 PMid:11150877

Paul ME, Wagner TD, Tukel CA, et al. A preliminary study of the effect of menstruation on the incidence of acute mountain sickness. Emergency Medicine Journal 2023;40(5):333-34. DOI: https://doi.org/10.1136/emermed-2022-212923 PMid:36792343

Mateikaitė-Pipirienė K, Jean D, Paal P, et al. Menopause and High Altitude: A Scoping Review-UIAA Medical Commission Recommendations. High Altitude Medicine & Biology 2024;25(1):1-8. DOI: https://doi.org/10.1089/ham.2023.0039 PMid:37922458

Verratti V, Ietta F, Paulesu L, et al. Physiological effects of high‐altitude trekking on gonadal, thyroid hormones and macrophage migration inhibitory factor (MIF) responses in young lowlander women. Physiological reports 2017;5(20):e13400. DOI: https://doi.org/10.14814/phy2.13400 PMid:29066595 PMCid:PMC5661227

Farage MA, Neill S, MacLean AB. Physiological changes associated with the menstrual cycle: a review. Obstetrical & gynecological survey 2009;64(1):58-72. DOI: https://doi.org/10.1097/OGX.0b013e3181932a37 PMid:19099613

Fletcher AK. The Effect of Barometric Pressure, Temperature, and Precipitation on Preterm Labor in Expecting Women in South Carolina. Journal of the South Carolina Academy of Science. 2021;19(1):41-48.

Giorgis-Allemand L, Pedersen M, Bernard C, et al. The influence of meteorological factors and atmospheric pollutants on the risk of preterm birth. American journal of epidemiology. 2017;185(4):247-58. DOI: https://doi.org/10.1093/aje/kww141 PMid:28087514

Grant ID, Giussani DA, Aiken CE. Fetal growth and spontaneous preterm birth in high‐altitude pregnancy: A systematic review, meta‐analysis, and meta‐regression. International Journal of Gynecology & Obstetrics. 2022;157(2):221-29. DOI: https://doi.org/10.1002/ijgo.13779 PMid:34101174

Yang L, Helbich-Poschacher V, Cao C, Klebermass-Schrehof K, Waldhoer T. Maternal altitude and risk of low birthweight: A systematic review and meta-analyses. Placenta. 2020 Nov;101:124-131. DOI: https://doi.org/10.1016/j.placenta.2020.09.010 PMid:32956874

Brown ER, Giussani DA. Cause of fetal growth restriction during high-altitude pregnancy. Iscience 2024;27(5):109702. DOI: https://doi.org/10.1016/j.isci.2024.109702 PMid:38694168 PMCid:PMC11061758

Garrido DI, Garrido SM. Cancer risk associated with living at high altitude in Ecuadorian population from 2005 to 2014. Clujul Medical 2018;91(2):188-196. DOI: https://doi.org/10.15386/cjmed-932 PMid:29785157 PMCid:PMC5958984

Hart JE, Jeon CY, Ivers LC, et al. Effect of directly observed therapy for highly active antiretroviral therapy on virologic, immunologic, and adherence outcomes: a meta-analysis and systematic review. JAIDS Journal of Acquired Immune Deficiency Syndromes 2010;54(2):167-179. DOI: https://doi.org/10.1097/QAI.0b013e3181d9a330 PMid:20375848 PMCid:PMC4022185

Thiersch M, Swenson ER. High altitude and cancer mortality. High altitude medicine & biology 2018;19(2):116-23. DOI: https://doi.org/10.1089/ham.2017.0061 PMid:29389240

Diamond-Smith NG, Epstein A, Zlatnik MG, et al. The association between timing in pregnancy of drought and excess rainfall, infant sex, and birthweight: Evidence from Nepal. Environmental Epidemiology 2023;7(5):e263. DOI: https://doi.org/10.1097/EE9.0000000000000263 PMid:37840861 PMCid:PMC10569756

Qiao X, Straight B, Ngo D, et al. Severe drought exposure in utero associates to children's epigenetic age acceleration in a global climate change hot spot. Nature Communications 2024;15:4140. DOI: https://doi.org/10.1038/s41467-024-48426-7 PMid:38755138 PMCid:PMC11099019

Ashraf M, Shahzad S, Sequeria P, Bashir A, Azmat SK. Understanding Challenges Women Face in Flood-Affected Areas to Access Sexual and Reproductive Health Services: A Rapid Assessment from a Disaster-Torn Pakistan. Biomed Res Int. 2024;2024:1113634. DOI: https://doi.org/10.1155/2024/1113634 PMid:38590384 PMCid:PMC11001467

Oskorouchi HR, Nie P, Sousa-Poza A. The effect of floods on anemia among reproductive-age women in Afghanistan. PloS one 2018;13(2):e0191726. DOI: https://doi.org/10.1371/journal.pone.0191726 PMid:29425219 PMCid:PMC5806855

Riazi H, Yazdani F, Bagherinia M, et al. A review on the effect of medicinal plants on the treatment of menopausal sleep disorders in Iran. The Iranian Journal of Obstetrics, Gynecology and Infertility. 2022; 25(4): 88-95. DOI: https://doi.org/10.22038/ijogi.2022.20718

Kamal M, Kenawy MA, Rady MH, et al. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PloS one. 2018;13(12):e0210122. DOI: https://doi.org/10.1371/journal.pone.0210122 PMid:30596764 PMCid:PMC6312308

Abdullah ASM, Dalal K, Halim A, et al. Effects of climate change and maternal mortality: perspective from case studies in the rural area of Bangladesh. International journal of environmental research and public health 2019;16(23):4594. DOI: https://doi.org/10.3390/ijerph16234594 PMid:31756954 PMCid:PMC6926614

Samon S, Rohlman D, Tidwell L, et al. Determinants of exposure to endocrine disruptors following hurricane Harvey. Environmental research 2023;217:114867. DOI: https://doi.org/10.1016/j.envres.2022.114867 PMid:36423664 PMCid:PMC9884094

Bariani MV, Correa F, Dominguez Rubio AP, et al. Maternal obesogenic diet combined with postnatal exposure to high‐fat diet induces metabolic alterations in offspring. Journal of cellular physiology 2020;235(11):8260-8269. DOI: https://doi.org/10.1002/jcp.29482 PMid:31970793

Dehingia N, Dixit A, Heskett K, et al. Collective efficacy measures for women and girls in low-and middle-income countries: a systematic review. BMC Women's Health 2022;22:129. DOI: https://doi.org/10.1186/s12905-022-01688-z PMid:35468776 PMCid:PMC9036723

Epstein A, Bendavid E, Nash D, et al. Drought and intimate partner violence towards women in 19 countries in sub-Saharan Africa during 2011-2018: A population-based study. PLoS Medicine 2020;17(3):e1003064. DOI: https://doi.org/10.1371/journal.pmed.1003064 PMid:32191701 PMCid:PMC7081984

World Health Organization. Tropical Cyclones 2024. Available from: https://www.who.int/health-topics/tropical-cyclones#tab=tab_1 Accessed Feb 10th, 2025

World Health Organization. Chemical releases associated with cyclones- 2018. Available from: https://www.who.int/publications/i/item/chemical-releases-associated-with-cyclones Accessed Feb 10th, 2025.

Waddell SL, Jayaweera DT, Mirsaeidi M, et al. Perspectives on the health effects of hurricanes: a review and challenges. International journal of environmental research and public health. 2021;18(5):2756. DOI: https://doi.org/10.3390/ijerph18052756 PMid:33803162 PMCid:PMC7967478

Currie J, Rossin-Slater M. Weathering the storm: Hurricanes and birth outcomes. Journal of health economics. 2013;32(3):487-503. DOI: https://doi.org/10.1016/j.jhealeco.2013.01.004 PMid:23500506 PMCid:PMC3649867

Padula A, Benmarhnia T. Wildfires in pregnancy: potential threats to the newborn. Paediatric and perinatal epidemiology. 2022;36(1):54. DOI: https://doi.org/10.1111/ppe.12838 PMid:34951028 PMCid:PMC8869840

De Oliveira Galvão MF, Sadiktsis I, de Medeiros SRB, et al. Genotoxicity and DNA damage signaling in response to complex mixtures of PAHs in biomass burning particulate matter from cashew nut roasting. Environmental pollution. 2020;256:113381. DOI: https://doi.org/10.1016/j.envpol.2019.113381 PMid:31662259

Basilio E, Chen R, Fernandez AC, et al. Wildfire smoke exposure during pregnancy: a review of potential mechanisms of placental toxicity, impact on obstetric outcomes, and strategies to reduce exposure. International journal of environmental research and public health. 2022;19(21):13727. DOI: https://doi.org/10.3390/ijerph192113727 PMid:36360613 PMCid:PMC9657128

World Health Organization. Wild fires 2024. Available from: https://www.who.int/health-topics/wildfires#tab=tab_1. Accessed on Feb 10th, 2025.

National Cancer Institute. Cancer and Climate Change: The Health Threats of Unnatural Disasters 2023 Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2023/cancer-climate-change-impact. Accessed on Feb 10th, 2025.

Korsiak J, Pinault L, Christidis T, et al. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. The Lancet Planetary Health 2022;6(5):e400-e409. DOI: https://doi.org/10.1016/S2542-5196(22)00067-5 PMid:35550079

Hung SW, Li Y, Chen X, et al. Green tea epigallocatechin-3-gallate regulates autophagy in male and female reproductive cancer. Frontiers in Pharmacology 2022;13:906746. DOI: https://doi.org/10.3389/fphar.2022.906746 PMid:35860020 PMCid:PMC9289441

Kunz KR, Turcotte K, Pawer S, et al. Cancer in female firefighters: The clinicobiological, psychological, and social perspectives. Frontiers in Public Health 2023;11:1126066. DOI: https://doi.org/10.3389/fpubh.2023.1126066 PMid:37124817 PMCid:PMC10130581

Downloads

Published

2025-03-01

How to Cite

1.
Garg SS, Shanmugam R, Venugopal V. Effects of the Meteorological Phenomena on the Female Reproductive System – A Narrative Review. Natl J Community Med [Internet]. 2025 Mar. 1 [cited 2025 Mar. 23];16(03):303-14. Available from: https://njcmindia.com/index.php/file/article/view/4874

Issue

Section

Review Articles