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A B S T R A C T 
Background: Birth intervals are often modelled to understand the health implications of the mother as well 
as the newborn. Shorter birth intervals are linked with higher risks of maternal and infant mortality. Short 
birth intervals in North-East India are linked to higher maternal and infant mortality risks, necessitating accu-
rate model for targeted intervention. On the other hand, a longer birth interval has shown substantial reduc-
tion in the risk of maternal health issues and a better health outcome of the babies. 

Methods: Time-to-event data are often modelled by implementing the popular Cox proportional hazards 
model. However, the popularity of the Cox model can’t overrule the use of parametric models if the distribu-
tion of the survival time has a known parametric form that is derived from past experience in previous re-
search studies. Choosing an appropriate model from amongst various competing models is a topic of interest 
where different characteristics, such as the nature of censoring and the shape of hazards, are present in dif-
ferent dimensions for different events. We use information criteria and model fit measures to help select the 
best-fitted model among the five competing models for the data. Further graphical comparisons are made to 
conclude for a final which best fit the first birth interval. 

Conclusion: The three-parameter generalized gamma model shows one of the most appropriate models for 
modelling first birth interval after marriage data with low proportion of censored data with a mix of hazards. 
Statistical tests such as the Anderson-Darling and Kolmogorov-Smirnov tests are significantly affected by the 
presence of extreme values of the time variable at the later observed times. The generalised gamma model 
can inform policies to extend first birth intervals, reducing risks of adverse maternal and child health out-
comes in such datasets which are typical of demographic surveys. 
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INTRODUCTION 

Birth interval is referred to as the time between two 
successive live births by a woman. The duration be-
tween the date of marriage and the first live birth is 
the first open birth interval (FBI) after marriage. The 
mean age at which a woman conceives their first 
child is considered a great interest to researchers as 
it symbolises the strong association of a woman's fer-
tility level and the onset of the parenting journey. 
The fertility rate and number of births are affected by 
the maternal age at first birth, which also influences 
the population size, diversity and growth prospects. 
Through the reproductive phase, women have to con-
trol the number of babies.1 

The length of the successive birth intervals and the 
women’s reproductive pattern are impacted by the 
FBI.2 Examining the duration of birth intervals pro-
vides information on infant and childhood mortality 
and maternal health. Short birth intervals are con-
sidered to be those intervals which are less than two 
years, and it is associated with a higher risk of mor-
tality for both the mother and infant.3 In developing 
countries, the demographic characteristics of women 
are significantly affected by the first birth. Thus, age 
at marriage and age at first birth are considered 
proximate determinants of fertility.4 

Setu SP et.al studied the Bangladesh Demographic 
and Health Survey data, (2017-18) and found that 
among the parametric accelerated failure time mod-
els, the log-normal distribution provides best best-
fitted model in estimating the covariates associated 
with the first birth interval of ever-married Bangla-
deshi Women.5 

Nagdeve DA and Pradhan MR studied ever-married 
women in the 15-49 age group from NFHS-5, and 
found that the duration between first marriage to the 
first birth interval was 23 months in India and was 
associated with age at first marriage, educational 
level of women, place of residence, family economic 
status, exposure to mass media, contraceptive used 
and pregnancy termination history.6 

According to Singh NS et. al studied Manipur, a small 
state in North East India, in 2009, found that age at 
marriage of wife, parity and sex of child are signifi-
cant covariates associated with.4 

In North-East India, where adolescent marriages are 
common, understanding FBI patterns can guide 
community-level interventions like family planning 
education to promote longer intervals and lower fer-
tility rates, ultimately reducing population growth 
pressures. This region has unique demographic fea-
tures like high ethnic diversity and varying marriage 
customs, influencing FBI and warranting region-
specific models for equitable health policies. 

Many techniques employed to describe the first birth 
interval after marriage were mainly non-parametric 
approaches, whose estimates cannot be projected in-
to the future. Also, data on first birth interval data 

can’t be well fitted to a normal distribution because 
(i) they are skewed and (ii) there is the presence of 
censored or incomplete observations. Further, a time 
variable can’t be negative. To compensate these com-
plexities the Cox proportional hazards model be-
comes the usual way to model such data on birth in-
tervals. While fitting regression models for survival 
data, the Cox proportional hazards regression model7 
is so popular that no other model could replace it. 
There are two very important reasons that make the 
Cox model so popular: first, the technique does not 
require specifying the hazard function completely. 
Secondly, with a reduced set assumption, the hazard 
ratios are easily interpreted and clinically meaning-
ful. While the Cox model is widely used, parametric 
models may be better if prior studies suggest a spe-
cific shape for the distribution, offering more precise 
predictions for public health planning. Some ad-
vantages of fully parametric model are: (i) full MLE 
can be obtained, (ii) the clinically meaningful esti-
mates of effect are provided by estimated coeffi-
cients, (iii) estimates of survival time is provided by 
fitted values from the model and (iv) the differences 
between observed and predicted values of time is re-
sidual. These advantages motivate the use of para-
metric models in this study while the main objective 
is to identify the most appropriate model among a 
wide range of available parametric models. 

The problem of testing whether some given data 
comes from one of two distributions is quite old in 
the statistical literature. The problem is to select the 
correct model appropriate for the given data from 
two or more existing models. These issues are dis-
cussed by Atkinson AC8, Chen W9, Dumonceaux R10, 
Jackson OAY11 and Dyer AR12. Burke and Noufaily 
have been investigating survival data modelling, gen-
erally to cover some of the most popular parametric 
models, and to discover some of the better modelling 
choices that can be made using data from lung can-
cer, melanoma, and kidney function studies13. 

The present paper discusses some methods for 
choosing an appropriate parametric model for the 
First birth interval after marriage data. After choos-
ing the most appropriate model, we also examine the 
goodness of fit for each model, which could support 
the model selection and confirm the selection. 
 

METHODOLOGY 

Parametric survival models: 

While modelling the First birth interval after mar-
riage data, a parametric model assumes a certain dis-
tribution for the underlying time variable. Literally, it 
means that the models assume that the time data fol-
lows a specific distribution. The more popular distri-
butions, such as Weibull and log-normal, have been 
listed in the previous section. An obvious advantage 
of using a parametric model over a non-parametric 
or semi-parametric model is its accuracy of predic-
tions. However, the assumption of the specific distri-
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bution of the data should be made with a high degree 
of accuracy. This critical decision on the assumption 
of the specific distribution can be performed with 
prior knowledge of the population under study. 
However, in the case of unavailability of any prior 
knowledge, the researcher may choose an appropri-
ate distribution from among the variety of distribu-
tions available in the literature.  

There are similar parametric models which almost 
predict the outcome variable with the same amount 
of accuracy. For example, an analysis assuming a log-
normal distribution will usually produce the same 
conclusions as assuming a gamma distribution.14,15 
The choice of a particular model may be based on the 
corresponding interpretation of parameters. Firth 
proves that analysing gamma data assuming log 
normality has less efficiency than log-normal data 
assuming a gamma distribution.16 From a clinical tri-
al, Wiens concludes that the two distributions do not 
agree at all in a real dataset obtained.17 

Understanding the dataset thoroughly is crucial for 
deciding the final model to be fitted and interpreted. 
The suitability of each of the available models also 
needs to be understood while choosing the one for 
the relevant data. While understanding the underly-
ing data, we used the shape of the hazard function to 
understand the researcher’s prior knowledge of the 
phenomenon under study. 

The Weibull distribution is a versatile choice for 
modelling Time-to-event data. With two parameters 
𝛽 (shape) and 𝜆 (scale), density, survival, and hazard 
functions of the Weibull distribution are: 
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It is used for modelling public health data where the 
risk of an event changes over time, such as disease 
onset, recovery of health behaviour, etc. 

The Gompertz distribution with scale parameter 𝜃 
and shape parameter 𝜂 is characterized by the fol-
lowing density function, survival function and hazard 
functions 
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It is used to model data where the hazard rate in-
creases or decreases exponentially over time, such as 
human mortality etc. 

The log-normal distribution with parameters ( 𝜇, 𝜎) 
is characterized by the following density function, 
survival & hazard functions 
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where 𝜙(𝑥) is the cumulative distribution function of 
the standard normal distribution. 

It is used to model in time-to-event data where data 
are positively skewed, such as incubation period of 
disease, etc. 

The gamma distribution with shape parameter 𝜙 and 
inverse scale parameter 𝛽(=

ଵ

ఏ
) is characterized by 

the following density, survival and hazard functions 
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It is used in positively skewed data where the event 
rate changes over time but does not follow simple 
linear pattern. 

The generalized-gamma distribution is a highly flexi-
ble parametric model used to accommodate a wide 
range of data shapes. It is a generalisation of the two 
parameters of the gamma distribution and can also 
be generalized for many well-known distributions, 
such as exponential, Weibull, lognormal, etc. It has 
three parameters, viz. µ(location), σ(scale) and 
Q(shape). The density, survival and hazard function 
of generalized gamma are 
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It is used in modelling data that require a flexible dis-
tribution capable of representing many shapes of 
risk over time. 
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Table 1: Some common parametric models 

Distribution Parameter Hazard Shape Public health suitability 

Weibull shape =𝛽   
scale= 𝜆  

Decreasing/increasing/constant  It is used if hazard of an event changes over time, such 
as disease onset, recovery of health behaviour, etc. 

Log-normal Location=𝜇 
scale= 𝜎 

Bell-shaped (Rises then falls) It is used to model in time-to-event data where data 
are positively skewed, such as the incubation period 
of a disease, etc. 

Gompertz scale = 𝜃 
shape = 𝜂  

Exponential increase or de-
crease over time 

It is used to model data where the hazard rate in-
creases or decreases exponentially over time, such as 
human mortality etc. 

Generalised 
Gamma 

location=µ 
scale=σ 
shape=Q  

Increasing/Decreasing/Hump-
shaped(bell-shaped) 

It is used in modelling data that requires a flexible dis-
tribution capable of representing many shapes of risk 
over time. 

Gamma shape =𝜙 
scale=𝛽  

Increasing/Decreasing It is used in positively skewed data where the event 
rate changes over time but does not follow a simple 
linear pattern. 

 

Data and Methods 

We use data from the National Family Health Survey 
(NFHS-5, 2019-20)18 conducted during 2019-20 in 
the eight North East states of India. From this data, 
duration is determined from ever-married women 
aged 15-49 with complete marriage and birth dates 
were included; durations more than 10 years were 
excluded to minimize recall bias and focus on typical 
community patterns. For those women who are yet 
to give birth to a child at the time of the survey, this 
duration is the censored duration from the date of 
marriage to the date of the interview; this right cen-
soring for women without births was incorporated 
via maximum likelihood estimation in all parametric 
models. The final sample size on which the present 
analysis is carried out from the eight North-east 
states of India is 60820, out of which 5.8% are right 
censored which reflects low non-response in NFHS-
5, ensuring robust estimates for policy on reproduc-
tive health in North East India’s diverse population. 
Studies on the first birth interval show that it is an 
influencing factor for the future number of chil-
dren19, which is a determining factor for population 
growth. 

The Akaike Information Criterion (AIC) is a statistical 

measure that provide an easy way to select a model 
from a set of models and based on information theo-
ry. The lower the value of AIC for a model, the better 
it is. The formula is given by  

𝐴𝐼𝐶 =  −2(𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘 

where k is the number of free parameters in the 
model and likelihood is the probability of the data 
given in model20. 
 

RESULTS 

We have fitted five parametric models, each for the 
duration variables for the First birth interval after 
marriage, using R programming tools. The five par-
ametric models are discussed in the previous section. 
All fitted models are null models without any predic-
tors from which the parameters of the underlying 
distribution are estimated. The method of maximum 
likelihood estimation is used to obtain the parameter 
estimates. Table 1 shows the values of the estimated 
parameters for the five distributions along with the 
standard error of estimates, 95% confidence inter-
vals, log-likelihood for testing significance and AIC 
(Akaike Information Criteria) values. 

 

Table 2: Parameter estimates of the distributions for First birth interval after marriage 

Distribution Parameters Std. Error 95% Confidence interval Log-likelihood AIC* 
Weibull 𝛽 =1.62507 0.00462 1.61604 1.63416 -230217.1 460438.2 

𝜆 =27.07706 0.07300 26.93436 27.22051 

Log-normal 𝜇 =3.01247 0.00218 3.00820 3.01675 -218365.1 436734.3 
𝜎 =0.53240 0.00158 0.52931 0.53551 

Gompertz 𝜂 =0.013663 0.000186 0.013298 0.014028 -238519 477042 
𝜃 =0.031085 0.000184 0.030727 0.031447 

Generalised Gamma 𝜇 =2.59318 0.00562 2.58217 2.60419 -211539.7 423085.4 
𝜎 =0.30492 0.00373 0.29771 0.31231 
𝑄 =-1.99933 0.03827 -2.07433 -1.92433 

Gamma 𝜙 =3.246989 0.018232 3.211450 3.282921 -224534.6 449073.2 
𝛽 =0.135860 0.000836 0.134231 0.137508 

*AIC: Lower AIC (Akaike Information Criterion) indicates better model fit by balancing accuracy and simplicity, useful for selecting tools 
to predict birth spacing in public health surveillance. 
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Table 3: Median Survival Times for the First birth 
interval (in months) (K-M and Five distributions) 

Distribution/ 
Method 

Median S.E. 95% Confidence  
interval 

Lower Upper 
Kaplan-Meier 19 0.58 18.997 19.113 
Weibull 21.609 0.064 21.484 21.736 
Log-normal 20.337 0.045 20.254 20.426 
Gompertz 19.465 0.079 19.303 19.612 
Generalised Gamma 17.445 0.047 17.349 17.533 
Gamma 21.496 0.051 21.394 21.591 
 

In Table 2, the estimated parameters for the five 
models are shown for the First birth interval after 
marriage. All the estimated parameters lie within the 
95% confidence interval, thereby showing the signif-
icance of the estimated parameters. The AIC value for 
the three-parameter generalised gamma model is 
423085.4 and is the smallest out of the five models, 
thereby suggesting that the generalised gamma for 
this event could be the best choice. However, we will 

confirm this as we proceed further with checking the 
distributions and survival curve with the help of 
graphs.  

Table 3 gives the estimated median survival times, 
standard error and 95% C.I. for the First birth inter-
val using the five models, along with the non-
parametric Kaplan-Meier estimate in the first row of 
each table. In this table, the median Time to marriage 
estimated using the K-M estimator is 19 years. All the 
other estimated median durations are in the neigh-
bourhood of 21 years. We can see that the median 
duration of 19.46, estimated by the Gompertz, is the 
closest to 19 among the five medians. The K-M medi-
an of 19 months suggests a short FBI in North-East 
India, raising concerns for maternal depletion; the 
Gompertz model median of 19.46 months aligns 
closely, aiding forecasting of intervention needs. 
Thus, the choice of our models suggested by the AIC 
values, as compared to the non-parametric K-M 
model, is different, so we have to verify with graph-
ical methods. 

 
Figure 1: Density Curves and Survival curves for First birth interval 

 
In Figure 1, the probability density curves of the five 
distributions are drawn superimposed on the histo-
gram of the data on the duration of the First birth in-
terval. This will give a visual examination of how ap-
propriate a particular distribution is for describing 
the data. The green curve representing the general-
ized gamma distribution visually matches the ob-
served histogram of FBI most closely. In the second 
column of Figure1, the survival probability curves for 
the five parametric models, along with the non-
parametric Kaplan-Meier survival curve, are drawn. 
This supports using generalized gamma for commu-
nity health models predicting fertility delays. 

A Q-Q plot (quantile-quantile plot) is a graphical tool 
used in statistics to compare two probability distri-
butions by plotting their quantiles against each oth-
er. The Q-Q plot is a major diagnostic tool for check-
ing model adequacy. The more closely the plot pat-
tern is to the straight line, the more evidence there is 

in support of the model.21 This method allows for a 
visual assessment of how closely the two distribu-
tions align, particularly in terms of their shape, loca-
tion, scale, and skewness. In a Q-Q plot, each point 
represents the quantiles of one distribution plotted 
against the corresponding quantiles of another dis-
tribution. If the two distributions are similar, the 
points will approximately lie along a 45-degree ref-
erence line. In other words, if the two data sets 
come from a population with the same distribution, 
the points should fall approximately along this refer-
ence line. The greater the departure from this refer-
ence line, the greater the evidence for the conclusion 
that the two data sets have come from populations 
with different distributions. Q-Q plots are a powerful 
diagnostic tool in statistics for comparing distribu-
tions and assessing assumptions about data. They 
provide an intuitive visual representation that can 
reveal insights into data characteristics and relation-
ships between datasets. 
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Figure 2: Q-Q plots for First birth interval 
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Table 4: Statistical tests for goodness of fit 

Duration of First birth interval (Distribution: Gen. Gamma) 
Name of test Test Statistic P-value 
Kolmogorov-Smirnov 0.061188 <0.001 
Anderson-Darling 386.2 <0.001 
 
Figure 2 displays the Q-Q plots of the First birth in-
terval data versus the five estimated models. The 
theoretical quantiles, which are the quantiles of the 
assumed distributions, are plotted on the X-axis, and 
the sample quantiles are plotted along the Y-axis. 
The Q-Q plot for the Generalised Gamma distribution 
shows that the points are perfectly on the reference 
line up to a reasonable level of data points and shows 
departure from the reference line at the later data 
points. The departure of the points from the refer-
ence line indicates the presence of some extreme 
values in the data, which is inevitable in the analysis. 
All the remaining Q-Q plots do not show adequate 
evidence to conclude similarity of the distributions 
with the data.  

Some statistical tests are available in the literature to 
test whether the assumed distribution significantly 
agrees with the sample distribution. Table 4 shows 
result from the Kolmogorov-Smirnov (KS) and An-
derson-Darling (AD) tests for the assumed distribu-
tion as Generalized gamma for Duration of First birth 
interval. Both tests produce extremely low p-values, 
indicating statistically significant deviations from the 
assumed distributions. However, in statistical model 
evaluation, it is generally discussed and found that 
AIC remains a reliable criterion in cases where good-
ness-of-fit (GOF) tests are overly sensitive due to 
large samples, providing guidance on balancing 
model complexity and fit without overfitting.22 GOF 
tests are prone to indicate statistically significant 
discrepancies in large datasets. These sources argue 
that AIC and graphical diagnostics, like QQ plots, 
provide a more practical model fit assessment when 
tail deviations are minor.23,24 Goodness-of-fit testing 
in logistic regression acknowledges GOF tests' limita-
tions with large samples. It recommends using alter-
native model assessment tools, such as residual 
analysis and AIC, for practical model evaluation.25 

Thus, despite significant test results due to a large 
sample size, AIC and QQ plots confirm practical fit. In 
public health, this means the model reliably esti-
mates FBI risks without overfitting for policy simula-
tion. 
 

DISCUSSION 

The study explores five parametric models to fit du-
ration variables arising from Demographic events, 
i.e., First birth interval after marriage. The data used 
in the present analyses come from NFHS-5 (2019-
20) for the eight states of North East India. The dura-
tion of the First birth interval data shows a moder-
ately right-skewed distribution with a low percent-
age of right-censored data. 

Among the five parametric models, the lowest AIC 

values are found in the Generalized gamma distribu-
tion with 423085.4, followed by the Log-normal dis-
tribution with 436734.3. This shows that the gener-
alized gamma could be a good choice for the FBI par-
ametric model. 

The non-parametric (Kaplan-Meier) estimate of the 
median survival time for the First birth interval after 
marriage for North East India is found to be 19 
months. But the median estimate for the birth inter-
val for India is 23 months.6 The Gompertz model 
gives the closest value of the median First birth in-
terval of 19.46 months to that of the non-parametric 
(K-M) estimate. 

Short FBI in North-East India suggesting potential 
risk of maternal health and infant mortality risks, as 
per WHO guidelines. This is also supported by a close 
estimate of the Gompertz model with 19.46 months, 
and also helps in predicting whether future interven-
tions may be needed. 

For visual examinations by using probability curves, 
survival curves, and the Q-Q plots, we found that 
generalised gamma curves show the best overlays by 
visually matching observed data for the FBI in North 
East India. 

From the three conditions, Generalised Gamma is 
considered the best fit for the parametric model of 
the First birth interval after marriage. 

The Generalized Gamma Model is a flexible statistical 
model used for analysing time-to-event data, particu-
larly in survival analysis. Here are some key proper-
ties and characteristics of the Generalized Gamma 
distribution relevant to modelling time-to-event da-
ta. The Generalized Gamma distribution can mimic 
various other distributions, such as the Weibull, 
lognormal, and exponential distributions, depending 
on its parameters. This flexibility allows it to fit a 
wide range of data patterns, making it suitable for 
different types of survival data. It is defined by three 
parameters: shape (k), scale (θ), and a second shape 
parameter (p). The ability to adjust these parameters 
enables the model to capture different hazard func-
tions and survival patterns. By changing parameters, 
it reflects rising, falling, or steady fertility risk over 
time, ideal for diverse public health situations based 
on the parameter values, allowing it to represent in-
creasing, decreasing, or constant hazard rates over 
time. This adaptability is crucial for accurately mod-
elling survival times that may not follow a simple 
pattern. The Generalized Gamma model offers signif-
icant flexibility and adaptability for modelling time-
to-event data, but requires careful consideration re-
garding sample size and computational complexity. 
Its ability to represent various hazard functions 
makes it a powerful choice in survival analysis when 
traditional models do not suffice. 
 

LIMITATIONS 

The present study includes the use of null models 
without covariates, limiting insights into specific risk 
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factors; future work should extend to accelerated 
failure time models incorporating factors like educa-
tion, residence, and contraceptive use for compre-
hensive public health recommendations. 
 

CONCLUSION 

From the above condition using AIC values, graphical 
comparison (survival, probability, Q-Q plot) and me-
dian estimate, the Generalized gamma distribution 
has the lowest AIC value and is supported by the 
Graphical comparison from three different graphs. 
We can select the Generalized gamma distribution as 
the best choice for fitting the parametric model of the 
FBI after marriage. 

And as the median age of the FBI is short, the Gener-
alized gamma model’s fit enables tailored interven-
tions like premarital counselling to extend the inter-
val beyond 24 months. 
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