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ABSTRACT

Background: Birth intervals are often modelled to understand the health implications of the mother as well
as the newborn. Shorter birth intervals are linked with higher risks of maternal and infant mortality. Short
birth intervals in North-East India are linked to higher maternal and infant mortality risks, necessitating accu-
rate model for targeted intervention. On the other hand, a longer birth interval has shown substantial reduc-
tion in the risk of maternal health issues and a better health outcome of the babies.

Methods: Time-to-event data are often modelled by implementing the popular Cox proportional hazards
model. However, the popularity of the Cox model can’t overrule the use of parametric models if the distribu-
tion of the survival time has a known parametric form that is derived from past experience in previous re-
search studies. Choosing an appropriate model from amongst various competing models is a topic of interest
where different characteristics, such as the nature of censoring and the shape of hazards, are present in dif-
ferent dimensions for different events. We use information criteria and model fit measures to help select the
best-fitted model among the five competing models for the data. Further graphical comparisons are made to
conclude for a final which best fit the first birth interval.

Conclusion: The three-parameter generalized gamma model shows one of the most appropriate models for
modelling first birth interval after marriage data with low proportion of censored data with a mix of hazards.
Statistical tests such as the Anderson-Darling and Kolmogorov-Smirnov tests are significantly affected by the
presence of extreme values of the time variable at the later observed times. The generalised gamma model
can inform policies to extend first birth intervals, reducing risks of adverse maternal and child health out-
comes in such datasets which are typical of demographic surveys.
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INTRODUCTION

Birth interval is referred to as the time between two
successive live births by a woman. The duration be-
tween the date of marriage and the first live birth is
the first open birth interval (FBI) after marriage. The
mean age at which a woman conceives their first
child is considered a great interest to researchers as
it symbolises the strong association of a woman's fer-
tility level and the onset of the parenting journey.
The fertility rate and number of births are affected by
the maternal age at first birth, which also influences
the population size, diversity and growth prospects.
Through the reproductive phase, women have to con-
trol the number of babies.!

The length of the successive birth intervals and the
women'’s reproductive pattern are impacted by the
FBI.2 Examining the duration of birth intervals pro-
vides information on infant and childhood mortality
and maternal health. Short birth intervals are con-
sidered to be those intervals which are less than two
years, and it is associated with a higher risk of mor-
tality for both the mother and infant.3 In developing
countries, the demographic characteristics of women
are significantly affected by the first birth. Thus, age
at marriage and age at first birth are considered
proximate determinants of fertility.

Setu SP et.al studied the Bangladesh Demographic
and Health Survey data, (2017-18) and found that
among the parametric accelerated failure time mod-
els, the log-normal distribution provides best best-
fitted model in estimating the covariates associated
with the first birth interval of ever-married Bangla-
deshi Women.>

Nagdeve DA and Pradhan MR studied ever-married
women in the 15-49 age group from NFHS-5, and
found that the duration between first marriage to the
first birth interval was 23 months in India and was
associated with age at first marriage, educational
level of women, place of residence, family economic
status, exposure to mass media, contraceptive used
and pregnancy termination history.¢

According to Singh NS et. al studied Manipur, a small
state in North East India, in 2009, found that age at
marriage of wife, parity and sex of child are signifi-
cant covariates associated with.*

In North-East India, where adolescent marriages are
common, understanding FBI patterns can guide
community-level interventions like family planning
education to promote longer intervals and lower fer-
tility rates, ultimately reducing population growth
pressures. This region has unique demographic fea-
tures like high ethnic diversity and varying marriage
customs, influencing FBI and warranting region-
specific models for equitable health policies.

Many techniques employed to describe the first birth
interval after marriage were mainly non-parametric
approaches, whose estimates cannot be projected in-
to the future. Also, data on first birth interval data
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can’t be well fitted to a normal distribution because
(i) they are skewed and (ii) there is the presence of
censored or incomplete observations. Further, a time
variable can’t be negative. To compensate these com-
plexities the Cox proportional hazards model be-
comes the usual way to model such data on birth in-
tervals. While fitting regression models for survival
data, the Cox proportional hazards regression model”
is so popular that no other model could replace it.
There are two very important reasons that make the
Cox model so popular: first, the technique does not
require specifying the hazard function completely.
Secondly, with a reduced set assumption, the hazard
ratios are easily interpreted and clinically meaning-
ful. While the Cox model is widely used, parametric
models may be better if prior studies suggest a spe-
cific shape for the distribution, offering more precise
predictions for public health planning. Some ad-
vantages of fully parametric model are: (i) full MLE
can be obtained, (ii) the clinically meaningful esti-
mates of effect are provided by estimated coeffi-
cients, (iii) estimates of survival time is provided by
fitted values from the model and (iv) the differences
between observed and predicted values of time is re-
sidual. These advantages motivate the use of para-
metric models in this study while the main objective
is to identify the most appropriate model among a
wide range of available parametric models.

The problem of testing whether some given data
comes from one of two distributions is quite old in
the statistical literature. The problem is to select the
correct model appropriate for the given data from
two or more existing models. These issues are dis-
cussed by Atkinson AC8 Chen W?° Dumonceaux R1?,
Jackson OAY!! and Dyer AR!2. Burke and Noufaily
have been investigating survival data modelling, gen-
erally to cover some of the most popular parametric
models, and to discover some of the better modelling
choices that can be made using data from lung can-
cer, melanoma, and Kidney function studies?3.

The present paper discusses some methods for
choosing an appropriate parametric model for the
First birth interval after marriage data. After choos-
ing the most appropriate model, we also examine the
goodness of fit for each model, which could support
the model selection and confirm the selection.

METHODOLOGY

Parametric survival models:

While modelling the First birth interval after mar-
riage data, a parametric model assumes a certain dis-
tribution for the underlying time variable. Literally, it
means that the models assume that the time data fol-
lows a specific distribution. The more popular distri-
butions, such as Weibull and log-normal, have been
listed in the previous section. An obvious advantage
of using a parametric model over a non-parametric
or semi-parametric model is its accuracy of predic-
tions. However, the assumption of the specific distri-
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bution of the data should be made with a high degree
of accuracy. This critical decision on the assumption
of the specific distribution can be performed with
prior knowledge of the population under study.
However, in the case of unavailability of any prior
knowledge, the researcher may choose an appropri-
ate distribution from among the variety of distribu-
tions available in the literature.

There are similar parametric models which almost
predict the outcome variable with the same amount
of accuracy. For example, an analysis assuming a log-
normal distribution will usually produce the same
conclusions as assuming a gamma distribution.1415
The choice of a particular model may be based on the
corresponding interpretation of parameters. Firth
proves that analysing gamma data assuming log
normality has less efficiency than log-normal data
assuming a gamma distribution.1¢ From a clinical tri-
al, Wiens concludes that the two distributions do not
agree at all in a real dataset obtained.1”

Understanding the dataset thoroughly is crucial for
deciding the final model to be fitted and interpreted.
The suitability of each of the available models also
needs to be understood while choosing the one for
the relevant data. While understanding the underly-
ing data, we used the shape of the hazard function to
understand the researcher’s prior knowledge of the
phenomenon under study.

The Weibull distribution is a versatile choice for
modelling Time-to-event data. With two parameters
B (shape) and A (scale), density, survival, and hazard
functions of the Weibull distribution are:

— B
fx 8,2 =§G)B ) B>0,1>0,x=0

S(x) =exp <— (%)ﬁ>
-4

It is used for modelling public health data where the
risk of an event changes over time, such as disease
onset, recovery of health behaviour, etc.

The Gompertz distribution with scale parameter 6
and shape parameter 7 is characterized by the fol-
lowing density function, survival function and hazard
functions

%]
flx,n,0) = Be""exp<—5(e’7" - 1)) 71=06>0x=>0
6
S(x) = exp <—E(e"" - 1))
h(x) = 6e"*

It is used to model data where the hazard rate in-
creases or decreases exponentially over time, such as
human mortality etc.
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The log-normal distribution with parameters ( u, o)
is characterized by the following density function,
survival & hazard functions

1
e ~5o(logx—i)? ,x,0 >0

1
f(x.u.0)=xam

where log(X) ~N(u, 0?)
S =1-¢ (—ln(x; — ”)

1
e —m(logx—u)z

h( ) — xm/ﬁ
x — g (2

a

where ¢ (x) is the cumulative distribution function of
the standard normal distribution.

It is used to model in time-to-event data where data
are positively skewed, such as incubation period of
disease, etc.

The gamma distribution with shape parameter ¢ and
inverse scale parameter (= %) is characterized by
the following density, survival and hazard functions

¢
fG,é,p) = f—q)e‘ﬁ"x‘f"l.x >0,¢>0,8>0

¢_le—ﬁx¢xt
@) = Z ¢l
t=0
¢e_ﬁxx¢_1
h(x) = W

It is used in positively skewed data where the event
rate changes over time but does not follow simple
linear pattern.

The generalized-gamma distribution is a highly flexi-
ble parametric model used to accommodate a wide
range of data shapes. It is a generalisation of the two
parameters of the gamma distribution and can also
be generalized for many well-known distributions,
such as exponential, Weibull, lognormal, etc. It has
three parameters, viz. p(location), o(scale) and
Q(shape). The density, survival and hazard function
of generalized gamma are

o] x—pya —im©
fesno® =B (SE ol (1)

(059

Sx)=1- ( S

where y(s,x) =lower incomplete

gamma

A o2
h(x) = —2 -
r(@(3))
Ig)

It is used in modelling data that require a flexible dis-
tribution capable of representing many shapes of
risk over time.

Page 1215



Table 1: Some common parametric models
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Distribution Parameter Hazard Shape Public health suitability
Weibull shape =f8 Decreasing/increasing/constant It is used if hazard of an event changes over time, such
scale= 4 as disease onset, recovery of health behaviour, etc.
Log-normal Location=¢  Bell-shaped (Rises then falls) It is used to model in time-to-event data where data
scale= o are positively skewed, such as the incubation period
of a disease, etc.
Gompertz scale =6 Exponential increase or de- It is used to model data where the hazard rate in-
shape =7 crease over time creases or decreases exponentially over time, such as
human mortality etc.
Generalised location=p  Increasing/Decreasing/Hump- It is used in modelling data that requires a flexible dis-
Gamma scale=o shaped(bell-shaped) tribution capable of representing many shapes of risk
shape=Q over time.
Gamma shape =¢ Increasing/Decreasing It is used in positively skewed data where the event
scale=f rate changes over time but does not follow a simple
linear pattern.
Data and Methods measure that provide an easy way to select a model

We use data from the National Family Health Survey
(NFHS-5, 2019-20)18 conducted during 2019-20 in
the eight North East states of India. From this data,
duration is determined from ever-married women
aged 15-49 with complete marriage and birth dates
were included; durations more than 10 years were
excluded to minimize recall bias and focus on typical
community patterns. For those women who are yet
to give birth to a child at the time of the survey, this
duration is the censored duration from the date of
marriage to the date of the interview; this right cen-
soring for women without births was incorporated
via maximum likelihood estimation in all parametric
models. The final sample size on which the present
analysis is carried out from the eight North-east
states of India is 60820, out of which 5.8% are right
censored which reflects low non-response in NFHS-
5, ensuring robust estimates for policy on reproduc-
tive health in North East India’s diverse population.
Studies on the first birth interval show that it is an
influencing factor for the future number of chil-
dren??, which is a determining factor for population
growth.

The Akaike Information Criterion (AIC) is a statistical

from a set of models and based on information theo-
ry. The lower the value of AIC for a model, the better
itis. The formula is given by

AIC = —2(loglikelihood) + 2k

where k is the number of free parameters in the
model and likelihood is the probability of the data
given in model2°.

RESULTS

We have fitted five parametric models, each for the
duration variables for the First birth interval after
marriage, using R programming tools. The five par-
ametric models are discussed in the previous section.
All fitted models are null models without any predic-
tors from which the parameters of the underlying
distribution are estimated. The method of maximum
likelihood estimation is used to obtain the parameter
estimates. Table 1 shows the values of the estimated
parameters for the five distributions along with the
standard error of estimates, 95% confidence inter-
vals, log-likelihood for testing significance and AIC
(Akaike Information Criteria) values.

Table 2: Parameter estimates of the distributions for First birth interval after marriage

Distribution Parameters Std. Error  95% Confidence interval Log-likelihood AIC*

Weibull L =1.62507 0.00462 1.61604 1.63416 -230217.1 460438.2
A1 =27.07706 0.07300 26.93436 27.22051

Log-normal u =3.01247 0.00218 3.00820 3.01675 -218365.1 436734.3
o =0.53240 0.00158 0.52931 0.53551

Gompertz n =0.013663 0.000186 0.013298 0.014028 -238519 477042
6 =0.031085 0.000184 0.030727 0.031447

Generalised Gamma u =2.59318 0.00562 2.58217 2.60419 -211539.7 423085.4
o =0.30492 0.00373 0.29771 0.31231
Q =-1.99933 0.03827 -2.07433 -1.92433

Gamma ¢ =3.246989 0.018232 3.211450 3.282921 -224534.6 449073.2
B =0.135860 0.000836 0.134231 0.137508

*AIC: Lower AIC (Akaike Information Criterion) indicates better model fit by balancing accuracy and simplicity, useful for selecting tools

to predict birth spacing in public health surveillance.
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Table 3: Median Survival Times for the First birth
interval (in months) (K-M and Five distributions)

Distribution/ Median S.E. 95% Confidence
Method interval
Lower Upper
Kaplan-Meier 19 0.58 18997 19.113
Weibull 21.609 0.064 21484 21.736
Log-normal 20.337 0.045 20.254 20.426
Gompertz 19.465 0.079 19.303 19.612
Generalised Gamma 17.445 0.047 17.349 17.533
Gamma 21496 0.051 21.394 21.591

In Table 2, the estimated parameters for the five
models are shown for the First birth interval after
marriage. All the estimated parameters lie within the
95% confidence interval, thereby showing the signif-
icance of the estimated parameters. The AIC value for
the three-parameter generalised gamma model is
423085.4 and is the smallest out of the five models,
thereby suggesting that the generalised gamma for
this event could be the best choice. However, we will

Probability Density Curve for First Birth Interval
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confirm this as we proceed further with checking the
distributions and survival curve with the help of
graphs.

Table 3 gives the estimated median survival times,
standard error and 95% C.I. for the First birth inter-
val using the five models, along with the non-
parametric Kaplan-Meier estimate in the first row of
each table. In this table, the median Time to marriage
estimated using the K-M estimator is 19 years. All the
other estimated median durations are in the neigh-
bourhood of 21 years. We can see that the median
duration of 19.46, estimated by the Gompertz, is the
closest to 19 among the five medians. The K-M medi-
an of 19 months suggests a short FBI in North-East
India, raising concerns for maternal depletion; the
Gompertz model median of 19.46 months aligns
closely, aiding forecasting of intervention needs.
Thus, the choice of our models suggested by the AIC
values, as compared to the non-parametric K-M
model, is different, so we have to verify with graph-
ical methods.

Survival Curve for First Birth Interval

o ] ]
- Time to First birth Interval
Log-normal
Gamma
Weibull
«Q _| Generalised Gamma
o Gompertz
>
=
o
a LY _
o o
(<]
=
o
g =
£ o
=
w
N
o
o | &\——.ﬁ_
(=]
T | I I I I |
0 20 40 60 80 100 120
Duration

Figure 1: Density Curves and Survival curves for First birth interval

In Figure 1, the probability density curves of the five
distributions are drawn superimposed on the histo-
gram of the data on the duration of the First birth in-
terval. This will give a visual examination of how ap-
propriate a particular distribution is for describing
the data. The green curve representing the general-
ized gamma distribution visually matches the ob-
served histogram of FBI most closely. In the second
column of Figurel, the survival probability curves for
the five parametric models, along with the non-
parametric Kaplan-Meier survival curve, are drawn.
This supports using generalized gamma for commu-
nity health models predicting fertility delays.

A Q-Q plot (quantile-quantile plot) is a graphical tool
used in statistics to compare two probability distri-
butions by plotting their quantiles against each oth-
er. The Q-Q plot is a major diagnostic tool for check-
ing model adequacy. The more closely the plot pat-
tern is to the straight line, the more evidence there is
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in support of the model.2! This method allows for a
visual assessment of how closely the two distribu-
tions align, particularly in terms of their shape, loca-
tion, scale, and skewness. In a Q-Q plot, each point
represents the quantiles of one distribution plotted
against the corresponding quantiles of another dis-
tribution. If the two distributions are similar, the
points will approximately lie along a 45-degree ref-
erence line. In other words, if the two data sets
come from a population with the same distribution,
the points should fall approximately along this refer-
ence line. The greater the departure from this refer-
ence line, the greater the evidence for the conclusion
that the two data sets have come from populations
with different distributions. Q-Q plots are a powerful
diagnostic tool in statistics for comparing distribu-
tions and assessing assumptions about data. They
provide an intuitive visual representation that can
reveal insights into data characteristics and relation-
ships between datasets.
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QQ Plot of First Birth Interval against Log-normal Distribution QQ Plot of First Birth Interval against Gamma Distribution
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Figure 2: Q-Q plots for First birth interval
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Table 4: Statistical tests for goodness of fit

Duration of First birth interval (Distribution: Gen. Gamma)

Name of test Test Statistic P-value
Kolmogorov-Smirnov 0.061188 <0.001
Anderson-Darling 386.2 <0.001

Figure 2 displays the Q-Q plots of the First birth in-
terval data versus the five estimated models. The
theoretical quantiles, which are the quantiles of the
assumed distributions, are plotted on the X-axis, and
the sample quantiles are plotted along the Y-axis.
The Q-Q plot for the Generalised Gamma distribution
shows that the points are perfectly on the reference
line up to a reasonable level of data points and shows
departure from the reference line at the later data
points. The departure of the points from the refer-
ence line indicates the presence of some extreme
values in the data, which is inevitable in the analysis.
All the remaining Q-Q plots do not show adequate
evidence to conclude similarity of the distributions
with the data.

Some statistical tests are available in the literature to
test whether the assumed distribution significantly
agrees with the sample distribution. Table 4 shows
result from the Kolmogorov-Smirnov (KS) and An-
derson-Darling (AD) tests for the assumed distribu-
tion as Generalized gamma for Duration of First birth
interval. Both tests produce extremely low p-values,
indicating statistically significant deviations from the
assumed distributions. However, in statistical model
evaluation, it is generally discussed and found that
AIC remains a reliable criterion in cases where good-
ness-of-fit (GOF) tests are overly sensitive due to
large samples, providing guidance on balancing
model complexity and fit without overfitting.22 GOF
tests are prone to indicate statistically significant
discrepancies in large datasets. These sources argue
that AIC and graphical diagnostics, like QQ plots,
provide a more practical model fit assessment when
tail deviations are minor.2324 Goodness-of-fit testing
in logistic regression acknowledges GOF tests' limita-
tions with large samples. It recommends using alter-
native model assessment tools, such as residual
analysis and AIC, for practical model evaluation.25

Thus, despite significant test results due to a large
sample size, AIC and QQ plots confirm practical fit. In
public health, this means the model reliably esti-
mates FBI risks without overfitting for policy simula-
tion.

DISCUSSION

The study explores five parametric models to fit du-
ration variables arising from Demographic events,
i.e,, First birth interval after marriage. The data used
in the present analyses come from NFHS-5 (2019-
20) for the eight states of North East India. The dura-
tion of the First birth interval data shows a moder-
ately right-skewed distribution with a low percent-
age of right-censored data.

Among the five parametric models, the lowest AIC
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values are found in the Generalized gamma distribu-
tion with 423085.4, followed by the Log-normal dis-
tribution with 436734.3. This shows that the gener-
alized gamma could be a good choice for the FBI par-
ametric model.

The non-parametric (Kaplan-Meier) estimate of the
median survival time for the First birth interval after
marriage for North East India is found to be 19
months. But the median estimate for the birth inter-
val for India is 23 months.® The Gompertz model
gives the closest value of the median First birth in-
terval of 19.46 months to that of the non-parametric
(K-M) estimate.

Short FBI in North-East India suggesting potential
risk of maternal health and infant mortality risks, as
per WHO guidelines. This is also supported by a close
estimate of the Gompertz model with 19.46 months,
and also helps in predicting whether future interven-
tions may be needed.

For visual examinations by using probability curves,
survival curves, and the Q-Q plots, we found that
generalised gamma curves show the best overlays by
visually matching observed data for the FBI in North
East India.

From the three conditions, Generalised Gamma is
considered the best fit for the parametric model of
the First birth interval after marriage.

The Generalized Gamma Model is a flexible statistical
model used for analysing time-to-event data, particu-
larly in survival analysis. Here are some key proper-
ties and characteristics of the Generalized Gamma
distribution relevant to modelling time-to-event da-
ta. The Generalized Gamma distribution can mimic
various other distributions, such as the Weibull,
lognormal, and exponential distributions, depending
on its parameters. This flexibility allows it to fit a
wide range of data patterns, making it suitable for
different types of survival data. It is defined by three
parameters: shape (k), scale (6), and a second shape
parameter (p). The ability to adjust these parameters
enables the model to capture different hazard func-
tions and survival patterns. By changing parameters,
it reflects rising, falling, or steady fertility risk over
time, ideal for diverse public health situations based
on the parameter values, allowing it to represent in-
creasing, decreasing, or constant hazard rates over
time. This adaptability is crucial for accurately mod-
elling survival times that may not follow a simple
pattern. The Generalized Gamma model offers signif-
icant flexibility and adaptability for modelling time-
to-event data, but requires careful consideration re-
garding sample size and computational complexity.
Its ability to represent various hazard functions
makes it a powerful choice in survival analysis when
traditional models do not suffice.

LIMITATIONS

The present study includes the use of null models
without covariates, limiting insights into specific risk
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factors; future work should extend to accelerated
failure time models incorporating factors like educa-
tion, residence, and contraceptive use for compre-
hensive public health recommendations.

CONCLUSION

From the above condition using AIC values, graphical
comparison (survival, probability, Q-Q plot) and me-
dian estimate, the Generalized gamma distribution
has the lowest AIC value and is supported by the
Graphical comparison from three different graphs.
We can select the Generalized gamma distribution as
the best choice for fitting the parametric model of the
FBI after marriage.

And as the median age of the FBI is short, the Gener-
alized gamma model’s fit enables tailored interven-
tions like premarital counselling to extend the inter-
val beyond 24 months.
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