The Effect of a Pharmacist-Intervention Program on Clinical Outcomes in Diabetes Mellitus Patients

Sini T Inasu¹, Kumudavalli MV², Venkateswarlu BS³

¹Ahalia School of Pharmacy, Palakkad, Kerala
²³Vinayaka Missions College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed University), Salem, Tamil Nadu, India

DOI: 10.55489/njcm.140920233128

ABSTRACT

Background: Clinical pharmacists are skilled in identifying patient medication-related problems such as adverse drug responses and non-adherence. Pharmacists participate in diabetes management teams and offer direct patient treatment using several practice models in different ambulatory practice settings. The objective is to evaluate the effect of a pharmacist-intervention program on clinical outcomes in diabetes mellitus patients.

Materials and methods: The cohort consisted of diabetes patients attending multi-speciality care hospitals. Eligible patients were randomly assigned in a 1:1 ratio to the intervention and control groups. Each patient in the intervention group was counselled by the research pharmacist. The measure of diabetes self-management was assessed using the Summary of Diabetes Self-Care activities (SDSCA) questionnaire.

Results: 150 patients out of this population met the inclusion criteria. The study succeeded in proving the effect of pharmacist-led patient education in the improvement of the quality of life and clinical parameters of diabetes. The pronounced differences in the SDSCA scores of the test group and control group signify the impact of interventions and the consistency of the scale as well.

Conclusion: The effect of pharmacist-led interventions on diabetic treatment outcomes was evaluated. The results recommend the need for extensive pharmacist-led intervention programs in metabolic disorder management.

Keywords: Diabetes Mellitus; Role of Pharmacist, Diabetes Self-Care, interventions, pharmaceutical care, glycemic control, patient counselling

ARTICLE INFO

Financial Support: None declared
Conflict of Interest: None declared
Received: 06-06-2023, Accepted: 16-08-2023, Published: 01-09-2023
*Correspondence: Sini T. Inasu (Email: goguleena@gmail.com)

How to cite this article: Sini T Inasu, Kumudavalli MV, Venkateswarlu BS. The Effect of a Pharmacist-Intervention Program on Clinical Outcomes in Diabetes Mellitus Patients. Natl J Community Med 2023;14(9):588-595.
DOI: 10.55489/njcm.140920233128

Copy Right: The Authors retain the copyrights of this article, with first publication rights granted to Medsci Publications.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Share Alike (CC BY-SA) 4.0 License, which allows others to remix, adapt, and build upon the work commercially, as long as appropriate credit is given, and the new creations are licensed under the identical terms.

www.njcmindia.com | pISSN09763325 | eISSN22296816 | Published by Medsci Publications
INTRODUCTION

Diabetes is one of the leading causes of death in Indian patients. With a rise in living standards, diabetes and related problems have been rising in India in recent years. Compared with high-income areas, developing countries are deficient in the effective management of diabetes screening in the general population. Developing countries usually present with rapid population growth, an ageing population, an unhealthy local diet, urbanisation, obesity, an unhealthy lifestyle, and a lack of access to quality health care. The need for effective strategies that facilitate early diagnosis, advanced management, and primary prevention is driven by the economic cost of diabetes.

Pharmacists with clinical expertise are skilled in identifying patient medication-related problems such as adverse drug responses and non-adherence. Pharmacists participate in diabetes management teams and offer direct patient treatment using several practice models in different ambulatory practice settings through collaborative drug therapy management agreements. Pharmacists often have prescription authority and offer patient education and therapeutic suggestions. A discussion of medications intended to promote patients’ awareness of the condition and adherence to treatment illustrates a pharmacist-led diabetes care service.

The position of the chemist has undergone tremendous transformation over the years. There is a remarkable transition from purely dispensing to offering clinical services that involve patient education, hands-on patient care, and team-based chronic illness management. The expansion of the role of the chemist has been made possible by specialised training in patient care and are typically assigned to work with a team of medical professionals in a clinic environment. As healthcare moves from fee-for-service models to value-based care, which is delivered with the quadruple goals of increasing population health, reducing the cost of care, enhancing the patient experience, and improving provider satisfaction, there are unique opportunities for pharmacists.

There are numerous manifestations of pharmacist-managed diabetes treatment. The current study thus evaluates the effect of pharmacist interventions in diabetes management.

METHODOLOGY

Study design, settings, and subject: The current observational study adopted a prospective cohort design. The cohort analysis was conducted with 137 patients for 15 months at the outpatient diabetic clinic of a private hospital in Palakkad, Kerala. The research was conducted between January 2021 and July 2022, with a 15-month follow-up period following the initial consultation. A research clinical pharmacist worked two hours per day at the outpatient diabetes clinic during the week. The Institutional Ethics Committee of the Ahalia International Foundation in Kerala approved this investigation. Date of approval on October 14, 2020.

Patient recruitment and Randomization: Eligible patients were randomly assigned in a 1:1 ratio to the intervention and control groups using an unrestricted randomization technique. Throughout the study, audits of the randomization procedure were performed at regular intervals. Patients who regularly attend the hospital outpatient diabetic clinic and had a diabetes mellitus diagnosis for at least 6 months with HBA1c levels greater than 7% met the inclusion criteria. Patients with comorbidities including chronic kidney disease stage 4 or 5, or undergoing haemodialysis, active cancer diagnosis, undergone organ transplant, human immunodeficiency virus or acquired immune deficiency syndrome, pregnancy, polycystic ovary syndrome, drug or alcohol abuse, and Alzheimer’s disease patients were excluded.

Written informed consent was obtained from the study participants. Finally, A total of 150 diabetes patients (75 test group and 75 control group) attending an outpatient diabetic clinic were recruited into the study. During the study period, 7 patients from the test arm and 6 patients from the control arm dropped out from the study. Therefore, a total of 137 patients (68 test arm; 60 control arm) completed the study period.

Sample size: Based on published data on the variability (standard deviation [SD]=2.1%) of A1c in patients with type 2 diabetes, a sample size calculation indicated an absolute difference of more than 1% in...
A1c, with $\alpha = 0.05$ and a power of 90%, requiring a sample size of 69 patients in both the test and control groups. Due to the possibility of patients missing follow-up (10%) appointments, it was estimated that 75 patients would be required for each cohort.

Intervention: In addition to the physician visit following randomization, each participant in the intervention group also had an appointment with the research clinical pharmacist. Using questionnaires, medical reports, and hospital records, the clinical researcher collected baseline data for each patient in both categories. Demographic and disease characteristics, medication regimen, fasting glucose, and A1c levels were included in the data. The test group reviewed their medication and treatment plans over five meetings with a pharmacist that are spaced three months apart. Each patient was counselled by the research pharmacist about the value of self-monitoring blood glucose (SMBG), a healthy diet, exercise, and foot care. A Diabetes information brochure was provided as well at each appointment. Information on type 2 diabetes, complications, drugs, treatment objectives, and self-care was provided in the brochures. SDSCA questionnaire has been asked to fill at the beginning of the study and at the end of the study in both the groups.

The control group met with the clinical research pharmacist at the beginning and end of the 15-month period to obtain laboratory and questionnaire data. The patients in the control group received conventional diabetes outpatient care.

SDSCA Questionnaire

The measure of diabetes self-management was assessed using the Summary of Diabetes Self-Care activities (SDSCA) questionnaire. It is multidimensional, and each section is scored independently. The SDSCA measure is a brief self-report questionnaire of diabetes self-management that includes items assessing general diet, specific diet, exercise, blood-glucose testing, and foot care. Scores are calculated for each of the five regimen areas assessed by the SDSCA. The number of days per week on a scale of 0–7, mean number of days for various items in the questionnaire and specific score for additional items were assessed for parameters general diet, specific diet, exercise, blood-glucose testing, and foot care. The questionnaire being in English, was translated to the regional language Malayalam for the ease of understanding of the study subjects. Linguistic validation was carried out prior to application.

Data analysis: Data analysis of the diabetes patients were determined in accordance with the scoring pattern of the SDSCA questionnaire and CONSORT reporting guidelines used to validate the research data. The method of pharmacist intervention is depicted in Figure 1.

Figure 1: Details of diabetic patient’s systematic review study diagram

National Journal of Community Medicine | Volume 14 | Issue 09 | September 2023
Statistical analysis: Collected data were cleaned using the Prism statistical analysis software. Clear-cut variables are presented as counts and percentages, whereas continuous variables were given as means, standard deviations, and interquartile ranges. The weighted data were shown as a mean and percentage with a 95% confidence interval in descriptive statistics. We used odds ratios to perform a logistic regression analysis to determine risk factors. All models included a baseline value adjustment. Since the missing data were not restored or imputed, we believed they were randomly absent. Without accounting for multiple testing, the threshold for statistical significance was set at 0.05%, although all P values were interpreted by the overall data pattern.

RESULTS

The target population obtained during the study period in this study was 500 patients. Only 137 patients out of this population met the inclusion criteria. The test arm comprised of 68 subjects while the control arm had 69 subjects. The SDSCA questionnaire was used to report scores on general diet, specific diet, exercise, blood sugar testing, and foot care.

Socio-demographic and Clinical characteristics of the study participants: This study indicated that among the study participants 36 (52.94%) of the test group and 38 (55.07%) of the control group were male, 61 (89.79%) in the test group and 59 (85.5%) in the control were married. The mean ±SD age of participants was (52.24 ±11.5) years in test group and (51.95 ± 10.12) years in control group. The patient’s characteristics are shown in the table 1.

Self-care Activities: Patients in the test group achieved significant improvement than control group in their total diet score (+ 2.43 day/week vs. +1.56 day/week, P <0.0001), total specific diet score (+2.42 day/week vs. +1.09 day/week, P <0.0001), total exercise score (+2.53 day/week vs. +1.66 day/week, P <0.0001), total blood glucose measurement (+2.65 day/week vs. +1.28 day/week P <0.0001) and total foot care (+2.01 day/week vs.+ 1.37 day/week P <0.0001). Patients in the control group also achieve significant improvements in all the domains. However, in all domains the reductions in the test group were significantly larger than that in the control group (net difference: P <0.0001). The significant improvement in self-care activities among the test group may be attributable to the pharmacist’s intensive education on non-pharmacological treatment.

Table 1: Patients demographic and clinical characteristics

<table>
<thead>
<tr>
<th>Demographic and clinical characteristics</th>
<th>Test Group, n=68</th>
<th>Control Group, n=69</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean ± SD (median)</td>
<td>52.24 ± 11.5 (54)</td>
<td>51.95 ± 10.12 (51)</td>
<td>0.632</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>36 (52.94)</td>
<td>38 (55.07)</td>
<td>0.789</td>
</tr>
<tr>
<td>Female</td>
<td>32 (47.05)</td>
<td>31 (44.92)</td>
<td></td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>61 (89.79)</td>
<td>59 (85.5)</td>
<td>0.486</td>
</tr>
<tr>
<td>Single / divorced, or separated</td>
<td>7 (10.39)</td>
<td>10 (14.5)</td>
<td></td>
</tr>
<tr>
<td>Residence, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>50 (73.52)</td>
<td>47 (68.11)</td>
<td>0.432</td>
</tr>
<tr>
<td>Rural</td>
<td>18 (26.47)</td>
<td>22 (31.88)</td>
<td></td>
</tr>
<tr>
<td>Socio economic status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>5 (7.35)</td>
<td>3 (4.34)</td>
<td>0.287</td>
</tr>
<tr>
<td>Medium</td>
<td>47 (69.11)</td>
<td>52 (75.36)</td>
<td></td>
</tr>
<tr>
<td>Rich</td>
<td>16 (23.52)</td>
<td>14 (20.28)</td>
<td></td>
</tr>
<tr>
<td>Social support, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>26 (38.23)</td>
<td>21 (30.4)</td>
<td>0.214</td>
</tr>
<tr>
<td>Moderate</td>
<td>30 (44.11)</td>
<td>29 (42.02)</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>12 (17.64)</td>
<td>19 (27.53)</td>
<td></td>
</tr>
<tr>
<td>Smokers, n (%)</td>
<td>12 (17.65)</td>
<td>14 (28.99)</td>
<td>0.073</td>
</tr>
<tr>
<td>drinkers, n (%)</td>
<td>23 (33.82)</td>
<td>24 (34.78)</td>
<td>0.865</td>
</tr>
<tr>
<td>Duration of diabetes in years, mean ± SD (median)</td>
<td>10.12 ± 4.90 (10)</td>
<td>7.88 ± 3.04 (7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Comorbid condition, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>30 (44.11)</td>
<td>45 (56.21)</td>
<td>0.128</td>
</tr>
<tr>
<td>dyslipidaemia</td>
<td>32 (47.05)</td>
<td>31 (44.9)</td>
<td>0.731</td>
</tr>
<tr>
<td>Thyroid disease</td>
<td>5 (7.35)</td>
<td>8 (11.59)</td>
<td>0.308</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>1 (1.47)</td>
<td>4 (5.7)</td>
<td>0.244</td>
</tr>
<tr>
<td>CAD</td>
<td>6 (8.82)</td>
<td>6 (8.69)</td>
<td>0.953</td>
</tr>
<tr>
<td>obesity</td>
<td>7 (10.29)</td>
<td>2 (2.89)</td>
<td>0.090</td>
</tr>
<tr>
<td>Depression</td>
<td>3 (4.41)</td>
<td>7 (10.14)</td>
<td>0.251</td>
</tr>
<tr>
<td>Number of prescribed medications, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 types, n (%)</td>
<td>28 (41.17)</td>
<td>31 (44.92)</td>
<td>0.625</td>
</tr>
<tr>
<td>≥6 types, n (%)</td>
<td>40 (58.82)</td>
<td>38 (55.07)</td>
<td></td>
</tr>
<tr>
<td>Anti-diabetic medications, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>4 (5.88)</td>
<td>2 (2.89)</td>
<td>0.378</td>
</tr>
<tr>
<td>OHA</td>
<td>14 (20.58)</td>
<td>16 (23.1)</td>
<td>0.648</td>
</tr>
<tr>
<td>Insulin + OHA</td>
<td>50 (73.52)</td>
<td>51 (73.91)</td>
<td>0.910</td>
</tr>
</tbody>
</table>
Since $p < 0.05$, a significant difference was observed between the mean values of pre-intervention and post-intervention groups in the test groups.

Diabetic patients in the test group showed better glycaemic control post-intervention and presented with lower blood sugar levels. The results varied from the systematic review findings of Tooobert et al., where they studied the summary of diabetes self-care activities measure with results from 7 studies and a revised scale. A positive impact of pharmacist education was observed among diabetic patients in disease management, medication adherence and self-care knowledge. The SDSCA scale monitored the significance of blood sugar testing effectively. Hence, blood glucose is one of the crucial factors in determining disease progression, necessitating documentation as a crucial component of clinical surveillance.

It was confirmed from the study that diabetic patients after pharmacist counselling exercised regularly and attained control of their diabetic conditions. Kirwan J P et al also studied the impact of exercise on diabetic management and recommends exercise as central to effective lifestyle prevention and management of type 2 diabetes. As recommended by Umpierre D, Ribeiro PAB, Schaan BD and Ribeiro JP blood sugar levels should be monitored before, during, and after exercise.

Comparative analysis of foot ulcers in patients provided with and without patient education showed that pharmacist intervention had a significant impact in reducing foot ulcers. Diabetic foot ulcers are common complications in patients admitted to the hospital for severe diabetes. A diabetic foot ulcer is a typi-
Our study demonstrated the significance of the clinical pharmacist’s role in enhancing clinical outcomes for diabetic patients in Kerala, despite all existing barriers. Jarab’s investigation revealed the same problems. Choe et al. reported a reduction in mean A1c values from 10.1% to 8.0% in 41 intervention patients with type 2 diabetes who received a clinical pharmacy intervention similar to that used in the present study, compared with 39 control group patients whose A1c values decreased from 10.2% to 9.3% (P value for between-group difference in change amount = 0.03).

The improvements in A1c observed in the present study may be attributable to the integrated clinical pharmacist intervention with respect to providing individualized education on various self-care activities, enhancing adherence to prescribed medication, and regular telephone contact. Self-care practices are an excellent starting point for controlling blood glucose, and their primary result is achieving metabolic control. During the 15-month study period, patients who received pharmaceutical care demonstrated a significant improvement in their FBG levels compared to those who received standard care. Al Mazroui et al. reported a significant decrease in FBG in patients who received pharmaceutical care intervention at the conclusion of a 12-month follow-up period. Existing literature provides evidence of the advantageous effects of exercise on blood glucose control in diabetic patients.

Self-care activities such as diet, SMBG, and foot care demonstrated significant improvements. In a six-month community pharmacy setting, Mehuys et al. reported significant improvements in the domains of specific diet and foot care. Nonetheless, Clifford et al. found no change in either exercise participation or the intensity of regular activity over the course of the study. Significant improvements in self-care activities in our study may be attributable to the pharmacist’s intensive education regarding non-pharmacological treatment and the availability of a different pamphlet (e.g., containing suggestions about a healthy diet, SMBG, and foot care) at each visit.

In a randomized controlled trial, found that pharmacists were effective at increasing the number of days per week that patients engaged in healthful diet and diabetes self-care activities. Patients who received clinical pharmacy services in the present study reported significantly higher levels of physical activity than patients in the control group. The reported significant improvement in SMBG among intervention patients was not unexpected and could be attributed to the clinical pharmacist’s provision of high-quality information regarding blood glucose values indicative of hyperglycemia and hypoglycemia and how to respond appropriately to these results. At the conclusion of the study, foot care was substantially improved among the intervention patients. Similar results were found by Mehuys et al.

The significant differences between the means of the population subsets in the test and control group, con-
firm the validity and reliability of the SDSCA scale. The retrospective research design adopted and the comparison with a control group remains the major strength of the study. The comparison ensures the validity of the results obtained. The study also paves the foundation for extensive research in pharmacist interventions and patient care in diabetes management. The restriction of the sampling frame to 150 and unrestricted randomization were the major limitations of the study.

CONCLUSION

The study succeeded in proving the effect of pharmacist-led patient education in the improvement of the quality of life and clinical parameters of diabetes. The pronounced differences in the SDSCA scores of the test group and control group signify the impact of interventions and the consistency of the scale as well. The study demonstrates that pharmaceutical care for diabetic patients shows equivalent efficiency to pharmacotherapy with OHA or insulin. Clinical pharmacist-led interventions are a significant part of disease management, particularly in metabolic disorders like diabetes, where lifestyle and medication adherence are important factors.

ACKNOWLEDGEMENT

The authors acknowledge all participants, physicians, pharmacists, researchers, and healthcare team for facilitating the study and the contributions of every author is acknowledged as well.

ABBREVIATIONS

SMBG: Self-monitored blood glucose
HBA1C: Glycosylated haemoglobin
OHA: Oral hypoglycemic agents

REFERENCES

